On the values of Beatty sequence in an arithmetic progression
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 364-367
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper, we consider $N_d(x)=N(x;\alpha,\beta;d,a)$, $x\in\mathbb{N}$, which is the number of values of Beatty sequence $[\alpha n+\beta]$, $1\leqslant n\leqslant x$, for $\alpha>1$ irrational and with bounded partial quotients, $\beta\in[0;\alpha)$, in an arithmetic progression $(a+kd)$, $k\in\mathbb{N}$. We prove the asymptotic formula $N_d(x) = \frac{x}{d} + O(d\ln^3 x)$ as $x\to\infty,$ where the implied constant is absolute. For growing difference $d$ the result is non-trivial provided $d\ll \sqrt{x}\ln^{-3/2-\varepsilon}x$, $\varepsilon>0$.
Keywords:
Beatty sequence, arithmetic progression, asymptotic formula.
@article{CHEB_2020_21_1_a23,
author = {A. V. Begunts and D. V. Goryashin},
title = {On the values of {Beatty} sequence in an arithmetic progression},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {364--367},
year = {2020},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a23/}
}
A. V. Begunts; D. V. Goryashin. On the values of Beatty sequence in an arithmetic progression. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 364-367. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a23/
[1] Technau M., On Beatty sets and some generalisations thereof, Würzburg University Press, Würzburg, 2018 | DOI | Zbl
[2] Begunts A. V., Goryashin D. V., “Topical problems concerning Beatty sequences”, Chebyshevskii Sb., 18:4 (2017), 97–105 | DOI | MR
[3] Begunts A. V., “On the distribution of the values of sums of multiplicative functions on generalized arithmetic progressions”, Chebyshevskii Sb., 6:2 (2005), 52–74 | MR | Zbl
[4] Kuipers L., Niederreiter H., Uniform Distribution of Sequences, Wiley, New York, 1974 | MR | MR | Zbl