Determination of the displacement field in an inhomogeneous coating of an elastic plate when passing through her plane sound wave
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 310-321.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers a boundary value problem for a system of linear second-order ordinary differential equations constructed for determining the displacement field in a continuously inhomogeneous elastic coating of the plate when a plane sound wave passes through. It is believed that a homogeneous isotropic elastic plate with inhomogeneous in thickness elastic coating borders on ideal liquids. An approximate analytical solution of the boundary value problem by the power series method is obtained. The boundary-value problem is reduced to problems with initial conditions. The solution of the boundary value problem is presented in the form of a linear combination of fundamental decisions. Found analytical solution boundary value problem is valid for a wide class of heterogeneity laws of the coating material. The numerical calculations of the dependences of the components of the displacement vector at the boundaries of the coating from the angle of incidence of the plane wave are presented.
Keywords: boundary-value problem, displacement field, reflection and transmission of sound waves, homogeneous elastic plate, continuously inhomogeneous coating.
@article{CHEB_2020_21_1_a19,
     author = {L. A. Tolokonnikov and T. S. Nguyen},
     title = {Determination of the displacement field in an inhomogeneous coating of an elastic plate when passing through her plane sound wave},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {310--321},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a19/}
}
TY  - JOUR
AU  - L. A. Tolokonnikov
AU  - T. S. Nguyen
TI  - Determination of the displacement field in an inhomogeneous coating of an elastic plate when passing through her plane sound wave
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 310
EP  - 321
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a19/
LA  - ru
ID  - CHEB_2020_21_1_a19
ER  - 
%0 Journal Article
%A L. A. Tolokonnikov
%A T. S. Nguyen
%T Determination of the displacement field in an inhomogeneous coating of an elastic plate when passing through her plane sound wave
%J Čebyševskij sbornik
%D 2020
%P 310-321
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a19/
%G ru
%F CHEB_2020_21_1_a19
L. A. Tolokonnikov; T. S. Nguyen. Determination of the displacement field in an inhomogeneous coating of an elastic plate when passing through her plane sound wave. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 310-321. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a19/

[1] Prikhod'ko V. Yu., Tyutekin V. V., “Calculation of reflection coefficient of sound waves from solid layered media”, Akust. Zhurnal, 32:2 (1986), 212–218 (in Russian)

[2] Skobel'tsyn S. A., Tolokonnikov L. A., “Transmission of sound waves through a transversely isotropic inhomogeneous plane layer”, Akust. Zhurnal, 36:4 (1990), 740–744 (in Russian)

[3] Rinkevich A. B., Smirnov A. N., “Propagation of elastic waves in a non-uniform transversely isotropic plate”, Defektoskopiya, 2000, no. 8, 78–83 (in Russian)

[4] Tolokonnikov L. A., “Reflection and refraction of a planar acoustic waves in an anisotropic inhomogeneous layer”, J. Appl. Mech. and Techn. Physics, 40:5 (1999), 936–941 | DOI | Zbl

[5] Tolokonnikov L. A., “The transmission of sound through an inhomogeneous anisotropic layer adjoining viscous liquids”, J. Appl. Math. Mech., 62:6 (1998), 953–958 | DOI | MR

[6] Larin N. V., Tolokonnikov L. A., “The transmission of a plane acoustic wave through a non-uniform thermoelastic layer”, J. Appl. Math. Mech., 70:4 (2006), 590–598 | DOI | MR | Zbl

[7] Tolokonnikov L. A., Larin N. V., “Sound propagation through a discretely inhomogeneous thermoelastic plane layer adjacent to heat-conducting liquids”, J. Appl. Mech. and Techn. Physics, 58:1 (2017), 95–102 | DOI | MR | Zbl

[8] Larin N. V., Skobel'tsyn S. A., Tolokonnikov L. A., “Determination of the Inhomogeneity Laws for an Elastic Layer with Preset Sound-Reflecting Properties”, Acoustical Physics, 61:5 (2015), 504–510 | DOI

[9] Skobel'tsyn S. A., “Determining of the heterogeneity parameters of an anisotropic elastic layer on the sound transmission”, Izv. Tul. Gos. Univ., Ser. Tekh. Nauki, 2016, no. 7–2, 246–257 (in Russian)

[10] Tolokonnikov L. A., Yudachev V. V., “Reflection and refraction of a planar acoustic waves in an elastic planar layer with a non-uniform covering”, Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, 2015, no. 3, 219–226 (in Russian)

[11] Tolokonnikov L. A., Nguyen T. S., “About the influence of an non-uniform covering of the elastic plate on sound reflection and transmission”, Izv. Tul. Gos. Univ., Ser. Tekh. Nauki, 2018, no. 6, 362–372 (in Russian)

[12] Tolokonnikov L. A., Nguyen T. S., “The transmissionof sound through an elastic plate with an inhomogeneous coating adjoining viscous liquids”, Chebyshevskii sbornik, 20:2 (2019), 311–324 (in Russian) | MR | Zbl

[13] Larin N. V., Skobel'tsyn S. A., Tolokonnikov L. A., “Modelling the inhomogeneous coating of an elastic plate with optimum sound-reflecting properties”, J. Appl. Math. Mech., 80:4 (2016), 339–344 | DOI | MR | Zbl

[14] Larin N. V., “Determination of the inhomogeneity laws for coating of the thermoelastic plate to obtain minimum sound reflection”, Izv. Tul. Gos. Univ., Ser. Tekh. Nauki, 2016, no. 11-2, 216–234 (in Russian)

[15] Smirnov V. I., Higher Mathematics Course, P. 2, v. 3, Nauka, M., 1969, 672 pp. (in Russian) | MR