Asymptotic structure of eigenvalues and eigenvectors of certain triangular Hankel matrices
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 259-272

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hankel matrices considered in the article arose at one reformulation of the Riemann hypothesis proposed earlier by the author. Computer calculations showed that in the case of the Riemann zeta function the eigenvalues and the eigenvectors of such matrices have an interesting structure. The article studies a model situation when instead of the zeta function function one takes a function having a single zero. For this case we indicate the first terms of the asymptotic expansions of the smallest and largest (in absolute value) eigenvalues and the corresponding eigenvectors.
Keywords: Riemann zeta function, Riemann Hypothesis, Hankel matrices, eigenvalues, eigenvectors.
@article{CHEB_2020_21_1_a16,
     author = {Yu. V. Matiyasevich},
     title = {Asymptotic structure of eigenvalues and eigenvectors of certain triangular {Hankel} matrices},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {259--272},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a16/}
}
TY  - JOUR
AU  - Yu. V. Matiyasevich
TI  - Asymptotic structure of eigenvalues and eigenvectors of certain triangular Hankel matrices
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 259
EP  - 272
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a16/
LA  - ru
ID  - CHEB_2020_21_1_a16
ER  - 
%0 Journal Article
%A Yu. V. Matiyasevich
%T Asymptotic structure of eigenvalues and eigenvectors of certain triangular Hankel matrices
%J Čebyševskij sbornik
%D 2020
%P 259-272
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a16/
%G ru
%F CHEB_2020_21_1_a16
Yu. V. Matiyasevich. Asymptotic structure of eigenvalues and eigenvectors of certain triangular Hankel matrices. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 259-272. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a16/