Asymptotic structure of eigenvalues and eigenvectors of certain triangular Hankel matrices
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 259-272
Voir la notice de l'article provenant de la source Math-Net.Ru
The Hankel matrices considered in the article arose at one reformulation of the Riemann hypothesis proposed earlier by the author.
Computer calculations showed that in the case of the Riemann zeta function the eigenvalues and the eigenvectors of such matrices have an interesting structure.
The article studies a model situation when instead of the zeta function function one takes a function having a single zero. For this case we indicate the first terms of the asymptotic expansions of the smallest and largest (in absolute value) eigenvalues and the corresponding eigenvectors.
Keywords:
Riemann zeta function, Riemann Hypothesis, Hankel matrices, eigenvalues, eigenvectors.
@article{CHEB_2020_21_1_a16,
author = {Yu. V. Matiyasevich},
title = {Asymptotic structure of eigenvalues and eigenvectors of certain triangular {Hankel} matrices},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {259--272},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a16/}
}
TY - JOUR AU - Yu. V. Matiyasevich TI - Asymptotic structure of eigenvalues and eigenvectors of certain triangular Hankel matrices JO - Čebyševskij sbornik PY - 2020 SP - 259 EP - 272 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a16/ LA - ru ID - CHEB_2020_21_1_a16 ER -
Yu. V. Matiyasevich. Asymptotic structure of eigenvalues and eigenvectors of certain triangular Hankel matrices. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 259-272. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a16/