Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_1_a16, author = {Yu. V. Matiyasevich}, title = {Asymptotic structure of eigenvalues and eigenvectors of certain triangular {Hankel} matrices}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {259--272}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a16/} }
TY - JOUR AU - Yu. V. Matiyasevich TI - Asymptotic structure of eigenvalues and eigenvectors of certain triangular Hankel matrices JO - Čebyševskij sbornik PY - 2020 SP - 259 EP - 272 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a16/ LA - ru ID - CHEB_2020_21_1_a16 ER -
Yu. V. Matiyasevich. Asymptotic structure of eigenvalues and eigenvectors of certain triangular Hankel matrices. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 259-272. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a16/
[1] Beiker Dzh., Greivs-Morris P., Approksimatsii Pade, Mir, M., 1986 ; Baker G. A., Jr., Graves-Morris P. R., Padé Approximations, v. 1, Encyclopedia of mathematics and its applications, 13, Addison Wesley, Reading, Mass., 1981 ; v. 2, 14 | MR | MR
[2] Fonseca C., “The eigenvalues of some anti-tridiagonal Hankel matrices”, Kuwait J. Sci., 45:1, 1–6 | MR | Zbl
[3] Jacobi C. G. J., “Über die Darstellung einer Reihe Gegebner Werthe durch eine Gebrochne Rationale Function”, J. Reine Angew. Math., 30 (1846), 127–156 | MR | Zbl
[4] Matiyasevich Yu., Hidden Life of Riemann's Zeta Function 2. Electrons and Trains, 2007, arXiv: 0709.0028
[5] Matiyasevich Yu., “Riemann's zeta function: Some computations and conjectures”, Proceedings of Conference on Algorithmic Number Theory (Turku, 2007), TUCS General Publication Series, 46, eds. A.-M. Ernvall-Hytönen, M. Jutila, J. Karhumäki, A. Lepsitö, 87–112 http://logic.pdmi.ras.ru/ỹumat/personaljournal/zetahiddenlife/talks/turku2007/Matiyasevich_2007.pdf
[6] Matiyasevich Yu. V., The Riemann hypothesis and eigenvalues of related Hankel matrices. I, Preprint POMI 14-03, 2014 http://www.pdmi.ras.ru/preprint/2014/14-03.html
[7] Matiyasevich Yu. V., Structure of eigenvalues and eigenvectors of certain almost triangular Hankel matrices, Talk given at 7th St.Petersburg Conference in Spectral Theory on July 4 2015
[8] Yu. V. Matiyasevich, “Riemann's hypothesis in terms of the eigenvalues of special Hankel matrices”, Proc. Steklov Inst. Math., 296, suppl. 2 (2017), 78–91 | DOI | DOI | MR
[9] de Montessus de Ballore R., “Sur le fraction continues algébriques”, Bull. Soc. Math. France, 30 (1902), 28–36 | DOI | MR | Zbl
[10] Riemann B., Über die Anzhal der Primzahlen unter einer gegebenen Grösse, Monatsberichter der Berliner Akademie, November 1859 ; Included into: Riemann B., Gesammelte Werke, Teubner, Leipzig, 1892 ; reprinted Dover Books, New York, 1953 http://www.claymath.org/millennium/Riemann_Hypothesis/1859_manuscript/zeta.pdfhttp://www.maths.tcd.ie/pub/HistMath/People/Riemann/Zeta/EZeta.pdf | MR | Zbl | Zbl
[11] Saff E. B., “An extension of Montessus de Ballore's theorem on the convergence of interpolating rational functions”, J. Approximation Theory, 6:1 (1972), 63–67 | DOI | MR | Zbl
[12] Lita da Silva J., Spectral properties of anti-heptadiagonal persymmetric Hankel matrices, arXiv: 1907.00260 | MR