Application of integral formulas for solving ordinary differential equations of the second order with variable coefficients
Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 108-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers linear ordinary differential equations of the second order with variable coefficients (initial equations). Along with each initial equation the same equation is considered only with constant coefficients (accompanying equation). It is shown that the general solution of the initial equation is represented in the integral form through the general solution of the accompanying equation and the fundamental solution of the original equation. The fundamental solution is the perturbation method in the form of an infinite rows. Research is carried out on the convergence of rows. As a concrete example of the application of the developed methodology is considered the Chebyshev equation.
Keywords: second order differential equations, equations with variable coefficients, methods averaging, integral formulas.
@article{CHEB_2019_20_4_a7,
     author = {V. I. Gorbachev},
     title = {Application of integral formulas for solving ordinary differential equations of the second order with variable coefficients},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {108--123},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a7/}
}
TY  - JOUR
AU  - V. I. Gorbachev
TI  - Application of integral formulas for solving ordinary differential equations of the second order with variable coefficients
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 108
EP  - 123
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a7/
LA  - ru
ID  - CHEB_2019_20_4_a7
ER  - 
%0 Journal Article
%A V. I. Gorbachev
%T Application of integral formulas for solving ordinary differential equations of the second order with variable coefficients
%J Čebyševskij sbornik
%D 2019
%P 108-123
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a7/
%G ru
%F CHEB_2019_20_4_a7
V. I. Gorbachev. Application of integral formulas for solving ordinary differential equations of the second order with variable coefficients. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 108-123. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a7/

[1] Suetin P. K., Klassicheskie ortogonal'nye mnogochleny, Nauka: glavnaya redakciya fiziko-matematicheskoj literatury, M., 1979, 416 pp.

[2] Bahvalov N. S., Panasenko G. P., Osrednennie processov v periodicheskih sredah, Nauka, M., 1984, 352 pp. | MR

[3] Pobedrya B. E., Mekhanika kompozicionnyh materialov, Izd-vo MGU, M., 1984, 336 pp.

[4] Bogolyubov N. H., Mitropol'skij YU. A., Asimptoticheskie metody v teorii nelinejnyh kolebanij, Nauka, M., 1974, 504 pp. | MR

[5] Lomakin V. A., Teoriya uprugosti neodnorodnyh tel, Izd-vo MGU, M., 1976, 367 pp.

[6] Lions ZHak-Lui, Nekotorye metody resheniya nelinejnyh kraevyh zadach, Per. s fr. Pod red. i s predisl. O.A. Olejnik, Izd. 3-e, Editorial, M., 2010, 586 pp.

[7] Najfe A. H., Metody vozmushchenij, Mir, M., 1976, 456 pp.

[8] Kamke E., Spravochnik po obyknovennym differencial'nym uravneniyam, Nauka, M., 1971, 576 pp.

[9] Stepanov V. V., Kurs differencial'nyh uravnenij, Gosudarstvennoe izdatel'stvo fiziko-matematicheskoj literatury, M., 1958, 468 pp.

[10] Kolmogorov A. N., Fomin S. V., Elementy teorii funkcij i funkcional'nogo analiza, Nauka, M., 1972, 496 pp. | MR

[11] Kech V., Teodoresku P., Vvedenie v teoriyu obobshchennyh funkcij s prilozheniyami v tekhnike, Mir, M., 1978, 518 pp. | MR

[12] Gorbachev V. I., “Metod tenzorov Grina dlya resheniya kraevyh zadach teorii uprugosti neodnorodnyh sred”, Vychislitel'naya mekhanika deformiruemogo tverdogo tela, 1991, no. 2, 61–76

[13] Sedov L. I., Mekhanika sploshnoj sredy, v. 2, Nauka, M., 1970, 568 pp.

[14] Vladimirov V. S., Uravneniya matematicheskoj fiziki, Glavnaya redakciya fiziko-matematicheskoj literatury, M., 1971, 512 pp.

[15] Vladimirov V. S., Obobshchennye funkcii v matematicheskoj fizike, Nauka, M., 1976, 280 pp.

[16] Matveev N. M., Sbornik zadach i uprazhnenij po obyknovennym differencial'nym uravneniyam, Rosvuzizdat, M., 1962, 292 pp.

[17] Bateman H., Erdelyi A., Higer transcendental functions, v. 1, MC Grav-Hill Book Company, Inc., New York–Toronto–London, 1953, 296 pp. ; Perevod s angliiskogo N.Ya. Vilenkina, Izd. vtoroe, stereotipnoe, Nauka, M., 1974 | MR

[18] Abramowitz M., Stegun I. (eds), Handbook of mathematical functions with formulas, graphs and mathematical tables, National bureau standards applied mathematics series, 55, 1964, 830 pp. ; Nauka, M., 1979 | MR | Zbl

[19] YAnke E., Emde F., Lyosh F., Special'nye funkcii, Nauka, M., 1964, 344 pp.

[20] Gradshtejn I. S., Ryzhik I. M., Tablicy integralov, summ, ryadov i proizvedenij, Nauka, M., 1971, 1108 pp. | MR

[21] Kampe de Fer'e ZH., Kempbell R., Pet'o G., Fogel' T., Funkcii matematicheskoj fiziki. Spravochnoe rukovodstvo, Perevod s francuzskogo N. YA. Vilenkina, Nauka, M., 1963, 103 pp.