On the exponents of the convergence of singular integrals and singular series of a multivariate problem
Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 46-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we continue studies on the theory of multivariate trigonometric sums, in the base of which lies of the I.M.Vinogradov's method. Here we obtain for $n=r=2$ lower estimates of the convergence exponent of the singular series and the singular integral of the asymptotic formulas for $P\to\infty$ for the number of solutions of the following system of Diophantine equations $$ \sum_{j=1}^{2k}(-1)^jx_{1,j}^{t_1}\dots x_{r,j}^{t_r}=0, 0\leq t_1,\dots, t_r\leq n, $$ where $n\geq 2,r\geq 1, k$ are natural numbers, moreover an each variable $x_{i,j}$ can take all integer values from $1$ to $P\geq 1.$
Keywords: exponent of the convergence, singular integrals, singular series.
@article{CHEB_2019_20_4_a3,
     author = {L. G. Arkhipova and V. N. Chubarikov},
     title = {On the exponents of the convergence of singular integrals and singular series of a multivariate problem},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {46--57},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a3/}
}
TY  - JOUR
AU  - L. G. Arkhipova
AU  - V. N. Chubarikov
TI  - On the exponents of the convergence of singular integrals and singular series of a multivariate problem
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 46
EP  - 57
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a3/
LA  - ru
ID  - CHEB_2019_20_4_a3
ER  - 
%0 Journal Article
%A L. G. Arkhipova
%A V. N. Chubarikov
%T On the exponents of the convergence of singular integrals and singular series of a multivariate problem
%J Čebyševskij sbornik
%D 2019
%P 46-57
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a3/
%G ru
%F CHEB_2019_20_4_a3
L. G. Arkhipova; V. N. Chubarikov. On the exponents of the convergence of singular integrals and singular series of a multivariate problem. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 46-57. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a3/

[1] Vinogradov I. M, The method of trigonometric sums in the number theory, Nauka, M., 1980, 144 pp. | MR

[2] Vinogradov I. M., Elements of the number theory, Ed. 10th, Publ. House «Lan'», Sankt-Petersburg, 2004, 176 pp. | MR

[3] Hua L.-K., Selected Papers, Springer Verlag, New York, 1983, 888 pp. | MR | Zbl

[4] Hua L.-K., The method of trigonometric sums and its applications in the number theory, Mir, M., 1964, 188 pp.

[5] Arkhipov G. I., Selected Works, Publ. House of Orjol University, Orjol, 2013

[6] Arkhipov G. I., Chubarikov V. N., Karatsuba A. A., The theory of multiple trigonometric sums, Nauka, M., 1987 | MR

[7] Arkhipov G. I., Chubarikov V. N., Karatsuba A. A., Trigonometric Sums in Number Theory and Analysis, de Gruyter Expositions in Mathematics, 39, Walter de Gruyter, Berlin-New York, 2004 | MR | Zbl

[8] Saliba H. M., Chubarikov V. N., “On the multivariate Arkhipov–Karatsuba system of congruences”, Dokl. RAS, 472:6 (2017), 631–633 | Zbl

[9] Saliba H. M., Chubarikov V. N., “The theorem on a mean value for non complete rational trigonometric sums”, Chebyshev Sbornik, 20:1(69) (2019), 31–37

[10] Chubarikov V. N., “On a multiple integral”, Dokl. AS USSR, 227:6 (1976), 1308–1310 | MR | Zbl

[11] Chubarikov V. N., “On multiple rational trigonometric sums and multiple integrals”, Math. notes, 20:1 (1976), 61–68 | MR | Zbl

[12] Chubarikov V. N., “On the convergence exponent of the singular integral of a multivariate additive problem”, Dokl. RAS, 46:5 (2015), 530–532

[13] Chubarikov V. N., “On the convergence exponent of the mean value of complete rational arithmetical sums”, Chebyshev Sbornik, 16:4(56) (2015), 303–318 | MR | Zbl

[14] Arkhipova L. G., Chubarikov V. N., “On the convergence exponent of the singular series of a multivariate problem”, Vestn. Moscow University. Ser. 1, Mathematics, Mechanics, 2018, no. 5, 68–71 | Zbl

[15] Demidovich B. P., The collection of problems on the mathematical analysis, Ed. 19th, correct., Publ. House «Lan'», Sankt-Petersburg, 2017, 624 pp.

[16] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lectures on the mathematical analysis, Textbook, Ed. 4th., correct., DROFA, M., 2004, 640 pp.