Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$
Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 339-356

Voir la notice de l'article provenant de la source Math-Net.Ru

The article continues the study of the integral construction, which was first considered by V. H. Salikhov and V. A. Androsenko in 2015 [1]. This construction is a modification of the integral that was introduced by R. Marcovecchio in 2009 to find the irrationality measure of $\ln{2}$. With the help it V. A. Androsenko improved the estimate of irrationality measure of $\frac{\pi}{\sqrt{3}}$ in [1]. The previous results belonged to the L.V. Danilov [3], K. Aladi and M Robinson [4], G. V. Chudnovsky [5], А. К. Dubickas [6], M. Hata [7], [8], G. Rhin [9]. Another direction of the study of this integral construction is to obtain estimates of the approximation of some constants by numbers from quadratic fields. In 2016 M.Y.Luchin and V. H. Salikhov improved the estimate of the approximation of $\ln{2}$ by the numbers of the field $\mathbb{Q}(\sqrt{2})$. Previous estimates were found by F. Amoroso F. and C. Viola [11] and E. S. Zolotukhina [12]. The aim of this article is to obtain a new estimate of the approximation of logarithm of “Golden section” by the number of the field $\mathbb{Q}(\sqrt{2})$. Previous estimates were found by V. H. Salikhov and E. S. Zolotukhina [13].
Keywords: irrationality measure, quadratic irrationalities, symmetrized integrals.
@article{CHEB_2019_20_4_a21,
     author = {V. Kh. Salikhov and E. S. Zolotukhina},
     title = {Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {339--356},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a21/}
}
TY  - JOUR
AU  - V. Kh. Salikhov
AU  - E. S. Zolotukhina
TI  - Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 339
EP  - 356
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a21/
LA  - ru
ID  - CHEB_2019_20_4_a21
ER  - 
%0 Journal Article
%A V. Kh. Salikhov
%A E. S. Zolotukhina
%T Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$
%J Čebyševskij sbornik
%D 2019
%P 339-356
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a21/
%G ru
%F CHEB_2019_20_4_a21
V. Kh. Salikhov; E. S. Zolotukhina. Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 339-356. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a21/