Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_4_a21, author = {V. Kh. Salikhov and E. S. Zolotukhina}, title = {Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {339--356}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a21/} }
TY - JOUR AU - V. Kh. Salikhov AU - E. S. Zolotukhina TI - Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$ JO - Čebyševskij sbornik PY - 2019 SP - 339 EP - 356 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a21/ LA - ru ID - CHEB_2019_20_4_a21 ER -
%0 Journal Article %A V. Kh. Salikhov %A E. S. Zolotukhina %T Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$ %J Čebyševskij sbornik %D 2019 %P 339-356 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a21/ %G ru %F CHEB_2019_20_4_a21
V. Kh. Salikhov; E. S. Zolotukhina. Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 339-356. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a21/
[1] Androsenko V. A., “Symmetrized version of the Marcovecchio integral in the theory of diophantine approximations”, Math. Notes, 97:4 (2015), 483–492 (Russian) | MR | Zbl
[2] Marcovecchio R., “The Rhin-Viola method for $\ln 2$”, Acta Aritm., 139 (2009), 147–184 | DOI | MR | Zbl
[3] Danilov L. V., “Rational aproximations of some funcrions in rational points”, Math. Notes, 24:4 (1978), 449–458 (Russian) | MR | Zbl
[4] Aladi K., Robinson M., “Legendre polynomials and irrationality”, J. Reine Angew. Math., 318 (1980), 137–155 | MR
[5] Chudnovsky G. V., Recurrences Pade approximations and their applications, Lecture Notes in Pure and Appl. Math., 92 | MR | Zbl
[6] Dubickas A. K., “Approximation of $\frac{\pi}{\sqrt{3}}$ by rational fractions”, Publishing Moscow University Bulletin, Math., Mech., 6 (1987), 73–76 (Russian) | MR
[7] Hata M., “Legendre type polynomials and irrationality measures”, J. Reine Angew. Math., 407:1 (1990), 99–125 | MR | Zbl
[8] Hata M., “Rational approximations to $\pi$ and some other numbers”, Acta Arith., LXIII:4 (1993), 325–349 | MR
[9] Rhin G., “Approximants de Padé et mesures effectives d'irrationalité”, Progr. in Math., 71 (1987), 155–164 | DOI | MR | Zbl
[10] Luchin M. Y., “Aproximating $\ln{2}$ by numbers in the field $Q(\sqrt{2})$”, Izv. Math., 82:3 (2018), 108–135 (Russian) | MR | Zbl
[11] Amoroso F., Viola C., “Approximation measures for logarithms of algebraic numbers”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 30:1 (2001), 225–249 | MR | Zbl
[12] Salnikova E. S., “Approximations of some logarithms by numbers from the fields $\mathbb{Q}$ and $\mathbb{Q}\sqrt{d}$”, Journal of Mathematical Sciences, 16:6 (2010), 139–155 (Russian)
[13] Salikhov V. H., Salnikova E. S., “Diophantine aproximations of logarithm of “Golden section””, The Bryansk State University Herald, 2007, no. 1, 111–119 (Russian)
[14] Bashmakova M. G., “The estimate of the irrationality measures of logarithm of “Golden section””, Chebyshevskii Sbornik, 11:1 (2010), 47–53 (Russian) | MR | Zbl
[15] Dubickas A. K., “Approximation of logarithms of some numbers”, Diophantine approximations, v. 2, Publishing Moscow State University, 1986, 23–34 | MR
[16] Hata M., “Irrationality measures of the values of hypergeometric functions”, Acta Arith., LX (1992), 335–347 | DOI | MR | Zbl
[17] Heimonen A., Matala-aho T., V\"{aä}nänen K., “An application of Jacobi type polynomials to irrationality measures”, Bull. Austral. Math. Soc., 50:2 (1994), 225–243 | DOI | MR | Zbl
[18] Salnikova E., “On irrationality measures of some values of the Gauss function”, Chebyshevskii Sbornik, 8:2 (2007), 88–96 (Russian) | MR | Zbl
[19] Fedoryuk M. V., Pass method, Science, M., 1997, 368 pp. (Russian)