Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_4_a21, author = {V. Kh. Salikhov and E. S. Zolotukhina}, title = {Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {339--356}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a21/} }
TY - JOUR AU - V. Kh. Salikhov AU - E. S. Zolotukhina TI - Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$ JO - Čebyševskij sbornik PY - 2019 SP - 339 EP - 356 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a21/ LA - ru ID - CHEB_2019_20_4_a21 ER -
%0 Journal Article %A V. Kh. Salikhov %A E. S. Zolotukhina %T Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$ %J Čebyševskij sbornik %D 2019 %P 339-356 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a21/ %G ru %F CHEB_2019_20_4_a21
V. Kh. Salikhov; E. S. Zolotukhina. Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 339-356. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a21/