Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$
Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 339-356.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article continues the study of the integral construction, which was first considered by V. H. Salikhov and V. A. Androsenko in 2015 [1]. This construction is a modification of the integral that was introduced by R. Marcovecchio in 2009 to find the irrationality measure of $\ln{2}$. With the help it V. A. Androsenko improved the estimate of irrationality measure of $\frac{\pi}{\sqrt{3}}$ in [1]. The previous results belonged to the L.V. Danilov [3], K. Aladi and M Robinson [4], G. V. Chudnovsky [5], А. К. Dubickas [6], M. Hata [7], [8], G. Rhin [9]. Another direction of the study of this integral construction is to obtain estimates of the approximation of some constants by numbers from quadratic fields. In 2016 M.Y.Luchin and V. H. Salikhov improved the estimate of the approximation of $\ln{2}$ by the numbers of the field $\mathbb{Q}(\sqrt{2})$. Previous estimates were found by F. Amoroso F. and C. Viola [11] and E. S. Zolotukhina [12]. The aim of this article is to obtain a new estimate of the approximation of logarithm of “Golden section” by the number of the field $\mathbb{Q}(\sqrt{2})$. Previous estimates were found by V. H. Salikhov and E. S. Zolotukhina [13].
Keywords: irrationality measure, quadratic irrationalities, symmetrized integrals.
@article{CHEB_2019_20_4_a21,
     author = {V. Kh. Salikhov and E. S. Zolotukhina},
     title = {Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {339--356},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a21/}
}
TY  - JOUR
AU  - V. Kh. Salikhov
AU  - E. S. Zolotukhina
TI  - Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 339
EP  - 356
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a21/
LA  - ru
ID  - CHEB_2019_20_4_a21
ER  - 
%0 Journal Article
%A V. Kh. Salikhov
%A E. S. Zolotukhina
%T Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$
%J Čebyševskij sbornik
%D 2019
%P 339-356
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a21/
%G ru
%F CHEB_2019_20_4_a21
V. Kh. Salikhov; E. S. Zolotukhina. Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 339-356. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a21/

[1] Androsenko V. A., “Symmetrized version of the Marcovecchio integral in the theory of diophantine approximations”, Math. Notes, 97:4 (2015), 483–492 (Russian) | MR | Zbl

[2] Marcovecchio R., “The Rhin-Viola method for $\ln 2$”, Acta Aritm., 139 (2009), 147–184 | DOI | MR | Zbl

[3] Danilov L. V., “Rational aproximations of some funcrions in rational points”, Math. Notes, 24:4 (1978), 449–458 (Russian) | MR | Zbl

[4] Aladi K., Robinson M., “Legendre polynomials and irrationality”, J. Reine Angew. Math., 318 (1980), 137–155 | MR

[5] Chudnovsky G. V., Recurrences Pade approximations and their applications, Lecture Notes in Pure and Appl. Math., 92 | MR | Zbl

[6] Dubickas A. K., “Approximation of $\frac{\pi}{\sqrt{3}}$ by rational fractions”, Publishing Moscow University Bulletin, Math., Mech., 6 (1987), 73–76 (Russian) | MR

[7] Hata M., “Legendre type polynomials and irrationality measures”, J. Reine Angew. Math., 407:1 (1990), 99–125 | MR | Zbl

[8] Hata M., “Rational approximations to $\pi$ and some other numbers”, Acta Arith., LXIII:4 (1993), 325–349 | MR

[9] Rhin G., “Approximants de Padé et mesures effectives d'irrationalité”, Progr. in Math., 71 (1987), 155–164 | DOI | MR | Zbl

[10] Luchin M. Y., “Aproximating $\ln{2}$ by numbers in the field $Q(\sqrt{2})$”, Izv. Math., 82:3 (2018), 108–135 (Russian) | MR | Zbl

[11] Amoroso F., Viola C., “Approximation measures for logarithms of algebraic numbers”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 30:1 (2001), 225–249 | MR | Zbl

[12] Salnikova E. S., “Approximations of some logarithms by numbers from the fields $\mathbb{Q}$ and $\mathbb{Q}\sqrt{d}$”, Journal of Mathematical Sciences, 16:6 (2010), 139–155 (Russian)

[13] Salikhov V. H., Salnikova E. S., “Diophantine aproximations of logarithm of “Golden section””, The Bryansk State University Herald, 2007, no. 1, 111–119 (Russian)

[14] Bashmakova M. G., “The estimate of the irrationality measures of logarithm of “Golden section””, Chebyshevskii Sbornik, 11:1 (2010), 47–53 (Russian) | MR | Zbl

[15] Dubickas A. K., “Approximation of logarithms of some numbers”, Diophantine approximations, v. 2, Publishing Moscow State University, 1986, 23–34 | MR

[16] Hata M., “Irrationality measures of the values of hypergeometric functions”, Acta Arith., LX (1992), 335–347 | DOI | MR | Zbl

[17] Heimonen A., Matala-aho T., V\"{aä}nänen K., “An application of Jacobi type polynomials to irrationality measures”, Bull. Austral. Math. Soc., 50:2 (1994), 225–243 | DOI | MR | Zbl

[18] Salnikova E., “On irrationality measures of some values of the Gauss function”, Chebyshevskii Sbornik, 8:2 (2007), 88–96 (Russian) | MR | Zbl

[19] Fedoryuk M. V., Pass method, Science, M., 1997, 368 pp. (Russian)