About one additive problem Hua Loo Keng's
Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 32-45
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be enough big real number and $ k\geq2$ be a natural number, $M$ be a set of natural numbers $n$ not exceeding $X$, which cannot be written as a sum of prime and fixed degree a prime, $E_k (X)=\mathrm{card} M.$ In present paper is proved theorem.
Theorem. For it is enough greater $X-$equitable estimation $ E_k (X)\ll X^{\gamma},$ where $$ \gamma\left\{ \begin{array}{lll} 1-(17612,983k^2 (\ln k+6,5452))^{-1}, \text{при} 2\leq k\leq 205,\\[1mm] 1-(68k^3 (2\ln k+\ln\ln k+2,8))^{-1}, \text{при} k>205,\\[1mm] 1-(137k^3 \ln k)^{-1}, \text{при} k>e^{628}. \end{array}\right. $$ In particular from this theorems follows that estimation $\gamma1-(137k^3 \ln k)^{-1},$ got by V. A. Plaksin for it is enough greater $k$, remains to be equitable under $\ln k>628$.
Keywords:
The Dirichlet charakter, Dirichlet $L$-function, exceptional set, representation numbers, exceptional zero, exceptional nature, main member, remaining member.
@article{CHEB_2019_20_4_a2,
author = {I. Allakov and A. Sh. Safarov},
title = {About one additive problem {Hua} {Loo} {Keng's}},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {32--45},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a2/}
}
I. Allakov; A. Sh. Safarov. About one additive problem Hua Loo Keng's. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 32-45. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a2/