About one additive problem Hua Loo Keng's
Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 32-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be enough big real number and $ k\geq2$ be a natural number, $M$ be a set of natural numbers $n$ not exceeding $X$, which cannot be written as a sum of prime and fixed degree a prime, $E_k (X)=\mathrm{card} M.$ In present paper is proved theorem. Theorem. For it is enough greater $X-$equitable estimation $ E_k (X)\ll X^{\gamma},$ where $$ \gamma\left\{ \begin{array}{lll} 1-(17612,983k^2 (\ln k+6,5452))^{-1}, \text{при} 2\leq k\leq 205,\\[1mm] 1-(68k^3 (2\ln k+\ln\ln k+2,8))^{-1}, \text{при} k>205,\\[1mm] 1-(137k^3 \ln k)^{-1}, \text{при} k>e^{628}. \end{array}\right. $$ In particular from this theorems follows that estimation $\gamma1-(137k^3 \ln k)^{-1},$ got by V. A. Plaksin for it is enough greater $k$, remains to be equitable under $\ln k>628$.
Keywords: The Dirichlet charakter, Dirichlet $L$-function, exceptional set, representation numbers, exceptional zero, exceptional nature, main member, remaining member.
@article{CHEB_2019_20_4_a2,
     author = {I. Allakov and A. Sh. Safarov},
     title = {About one additive problem {Hua} {Loo} {Keng's}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {32--45},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a2/}
}
TY  - JOUR
AU  - I. Allakov
AU  - A. Sh. Safarov
TI  - About one additive problem Hua Loo Keng's
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 32
EP  - 45
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a2/
LA  - ru
ID  - CHEB_2019_20_4_a2
ER  - 
%0 Journal Article
%A I. Allakov
%A A. Sh. Safarov
%T About one additive problem Hua Loo Keng's
%J Čebyševskij sbornik
%D 2019
%P 32-45
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a2/
%G ru
%F CHEB_2019_20_4_a2
I. Allakov; A. Sh. Safarov. About one additive problem Hua Loo Keng's. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 32-45. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a2/

[1] Allakov I., “O predstavlenii chisel summoi dvukh prostykh chisel iz arifmeticheskoi progressii”, Izvestiya VUZov. “Matematika”, 2000, no. 8(459), 3–15 | MR | Zbl

[2] Allakov I., Sonlar nazariyasining ba'zi bir additiv masalalarini analitik usullar bilan echish, Monografiya, “Ta'lim”, T., 2012, 200 pp.

[3] Allakov I., “Ob odnoi binarnoi additivnoi zadache s prostymi chislami iz arifmeticheskoi progressii”, Dokl. AN RUz, 1991, no. 7, 9

[4] Allakov I., “O chislakh, predstavimykh v vide summy prostogo i fiksirovannoi stepeni prostogo chisla”, Algebra i ee prilozheniya, Tezisy dokladov mezhdunar. konf. (5-9 avgusta, 2002, Krasnoyarsk), 3–4 | MR

[5] Arkhipov G. I., Chubarikov V. N., “Ob odnoi ternarnoi zadache s prostymi chislami”, Algebra i teoriya chisel: Sovremennye problemy i prilozheniya, Tez. dokl. V mezhdunar. konf. (19–20 maya, 2003, Tula), 18–19 | Zbl

[6] Vinogradov A. I., “O binarnoi probleme Khardi-Littlvuda”, Acta arithm. Varshava, 46 (1985), 33–56 | DOI | MR | Zbl

[7] Zhukova A. A., “Problema Khardi-Litlvuda”, Izv. Vuzov. Matematika, 2000, no. 2(453), 41–49 | Zbl

[8] Plaksin V. A., Isklyuchitelnoe mnozhestvo summy prostogo i fiksirovannoi stepeni prostogo chisla, Dep. v VINITI, 23.10.84. No 7010-84, Petrozavodsk, 1984, 33 pp.

[9] Plaksin V. A., “Ob odnom voprose Khua-Lo-Kena”, Mat. zametki, 1990, no. 3(47), 78–90 | Zbl

[10] Chubarikov V. N., “Mnogomernye problemy teorii prostykh chisel”, Chebyshevskii sbornik, 12:4 (2011), 176–256 | MR

[11] Davenport H., Multiplicative Number Theory, Graduate Texts in Math., 71, Third edition, Sringer-Verlag, New York, 2000, 178 pp. | MR

[12] Jorg Brudern, “Representations of natural numbers as the sum of a prime and a k-th power”, Tsukuba Journal of Mathematics, 32:2 (2008), 349–360 | DOI | MR | Zbl

[13] Montgomery H. L., Vaughan R. C., “The exceptional set in Goldbach' s problem”, Acta arithm., 27 (1975), 353–370 | DOI | MR | Zbl

[14] Montgomery H. L., Vaughan R. C., Multiplicative number theory, v. I, Classical theory, Cambridge University Press, 2006, 552 pp. | MR

[15] Vaughan R. C., The Hardi-Littlewood method, Cambridge University Press, New York, 1997, 233 pp. | MR

[16] Vinogradov A. I., The metod of trigonometrical Sums in the Theory of Numbers, Nauka, M., 1980, 144 pp. | MR