Short cubic exponential sums with Möbius function
Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 281-305

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is dedicated to the conclusion of non-trivial estimates of short cubic exponential sums with Möbius function of the form $$ S_3(\alpha;x,y) = \sum_{x-y\le x} \mu(n) e(\alpha n^3), $$ over minor arcs $\mathfrak{m}(\mathscr L^{32(B+18)})$ for $y\ge x^\frac{4}{5}\mathscr L^{8B+944}$ and $\tau=y^5x^{-2}\mathscr L^{-32(B+18)}.$
Keywords: shorts double exponential sum, Möbius function, method for estimating exponential sums with prime numbers, nontrivial estimate, minor arcs.
@article{CHEB_2019_20_4_a18,
     author = {Z. Kh. Rakhmonov and F. Z. Rahmonov},
     title = {Short cubic exponential sums with {M\"obius} function},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {281--305},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a18/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
AU  - F. Z. Rahmonov
TI  - Short cubic exponential sums with Möbius function
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 281
EP  - 305
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a18/
LA  - ru
ID  - CHEB_2019_20_4_a18
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%A F. Z. Rahmonov
%T Short cubic exponential sums with Möbius function
%J Čebyševskij sbornik
%D 2019
%P 281-305
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a18/
%G ru
%F CHEB_2019_20_4_a18
Z. Kh. Rakhmonov; F. Z. Rahmonov. Short cubic exponential sums with Möbius function. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 281-305. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a18/