Short cubic exponential sums with Möbius function
Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 281-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is dedicated to the conclusion of non-trivial estimates of short cubic exponential sums with Möbius function of the form $$ S_3(\alpha;x,y) = \sum_{x-y\le x} \mu(n) e(\alpha n^3), $$ over minor arcs $\mathfrak{m}(\mathscr L^{32(B+18)})$ for $y\ge x^\frac{4}{5}\mathscr L^{8B+944}$ and $\tau=y^5x^{-2}\mathscr L^{-32(B+18)}.$
Keywords: shorts double exponential sum, Möbius function, method for estimating exponential sums with prime numbers, nontrivial estimate, minor arcs.
@article{CHEB_2019_20_4_a18,
     author = {Z. Kh. Rakhmonov and F. Z. Rahmonov},
     title = {Short cubic exponential sums with {M\"obius} function},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {281--305},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a18/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
AU  - F. Z. Rahmonov
TI  - Short cubic exponential sums with Möbius function
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 281
EP  - 305
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a18/
LA  - ru
ID  - CHEB_2019_20_4_a18
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%A F. Z. Rahmonov
%T Short cubic exponential sums with Möbius function
%J Čebyševskij sbornik
%D 2019
%P 281-305
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a18/
%G ru
%F CHEB_2019_20_4_a18
Z. Kh. Rakhmonov; F. Z. Rahmonov. Short cubic exponential sums with Möbius function. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 281-305. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a18/

[1] Davenport H., “On some infinite series involving arithmetical functions (II)”, The Quarterly Journal of Mathematics, 8:1 (1937), 313–320 | DOI | MR

[2] Hua L. K., Additive theory of prime numbers, American Mathematical Soc., 1965, 190 pp. | MR | Zbl

[3] Baker R. C., Harman G., “Exponential sums formed with the Mobius function”, J. London Math. Soc., 2-43:2 (1991), 193–198 | DOI | MR | Zbl

[4] Liu J. Y., Zhan T., “Exponential sums involving the Mobius function”, Indag. Math. (N.S.), 7:2 (1996), 271–278 | DOI | MR | Zbl

[5] Zhan T., “Davenport's theorem in short intervals”, Chin. Ann. of Math., 12 B:4 (1991), 421–431 | MR | Zbl

[6] Zhan T., “On the representation of large odd integer as a sum of three almost equal primes”, Acta Math Sinica. New ser., 7:3, 135–170 | MR

[7] Liu J. Y., Zhan T., “Estimation of exponential sums over primes in short intervals I”, Monatshefte für Mathematik, 127:1 (1999), 27–41 | DOI | MR | Zbl

[8] Lu G. S., Lao H. X., “On exponential sums over primes in short intervals”, Monatshefte fur Mathematik, 151:2 (2007), 153–164 | DOI | MR | Zbl

[9] Kumchev A V., “On Weyl sums over primes in short intervals”, Arithmetic in Shangrila, Proceedings of the 6th China-Japan Seminar on Number Theory, Series on Number Theory and Its Applications, 9, World Scientific, Singapore, 2012, 116–131 | MR

[10] Rakhmonov Z. Kh., Rakhmonov F. Z., “Short Cubic Exponential Sums over Primes”, Proceedings of the Steklov Institute of Mathematics, 296 (2017), 211–233 | DOI | DOI | MR | Zbl

[11] Rakhmonov Z. Kh., Rakhmonov F. Z., Zamonov B.M., “Estimates of short cubic double exponential sums with a long continuous summation”, Chebyshevskii Sbornik, 17:1 (2016), 217–231 | MR | Zbl

[12] Rakhmonov Z. Kh., Zamonov B. M., “Short cubic double exponential sums, with a long continuous summation”, Izvestiya Akademii nauk Respubliki Tajikistan. Otdeleniye fiziko-matematicheskikh, khimicheskikh, geologicheskikh i tekhnicheskikh nauk, 2014, no. 4(157), 7–23 (in Russian)

[13] Rakhmonov Z. Kh., Rakhmonov F. Z., “Sum of short exponential sums over prime numbers”, Doklady Mathematics, 90:3 (2014), 699–700 | DOI | MR | Zbl

[14] Rakhmonov Z. Kh., Rakhmonov F. Z., “The sum of short double trigonometric sums”, Doklady Akademii nauk Respubliki Tajikistan, 56:11 (2013), 853–860 (in Russian)

[15] Rahmonov F. Z., “Estimate of quadratic trigonometric sums with prime numbers”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 3, 56–60 | Zbl

[16] Rakhmonov Z. Kh., “Theorem on the mean value of $\psi(x,\chi)$ and its applications”, Russian Academy of Sciences. Izvestiya Mathematics, 43:1 (1994), 49–64 | DOI | MR | Zbl

[17] Vinogradov I. M., Special variants of the method of trigonometric sums, Izdat. “Nauka”, M., 1976, 119 pp. (Russian) | MR

[18] Mardjhanashvili K. K., “An estimate for an arithmetic sum”, Doklady Akad. Nauk SSSR, 22:7 (1939), 391–393