Short cubic exponential sums with Möbius function
Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 281-305
Voir la notice de l'article provenant de la source Math-Net.Ru
The work is dedicated to the conclusion of non-trivial estimates of short cubic exponential sums with Möbius function of the form $$ S_3(\alpha;x,y) = \sum_{x-y\le x} \mu(n) e(\alpha n^3), $$ over minor arcs $\mathfrak{m}(\mathscr L^{32(B+18)})$ for $y\ge x^\frac{4}{5}\mathscr L^{8B+944}$ and $\tau=y^5x^{-2}\mathscr L^{-32(B+18)}.$
Keywords:
shorts double exponential sum, Möbius function, method for estimating exponential sums with prime numbers, nontrivial estimate, minor arcs.
@article{CHEB_2019_20_4_a18,
author = {Z. Kh. Rakhmonov and F. Z. Rahmonov},
title = {Short cubic exponential sums with {M\"obius} function},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {281--305},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a18/}
}
Z. Kh. Rakhmonov; F. Z. Rahmonov. Short cubic exponential sums with Möbius function. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 281-305. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a18/