Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_4_a18, author = {Z. Kh. Rakhmonov and F. Z. Rahmonov}, title = {Short cubic exponential sums with {M\"obius} function}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {281--305}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a18/} }
Z. Kh. Rakhmonov; F. Z. Rahmonov. Short cubic exponential sums with Möbius function. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 281-305. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a18/
[1] Davenport H., “On some infinite series involving arithmetical functions (II)”, The Quarterly Journal of Mathematics, 8:1 (1937), 313–320 | DOI | MR
[2] Hua L. K., Additive theory of prime numbers, American Mathematical Soc., 1965, 190 pp. | MR | Zbl
[3] Baker R. C., Harman G., “Exponential sums formed with the Mobius function”, J. London Math. Soc., 2-43:2 (1991), 193–198 | DOI | MR | Zbl
[4] Liu J. Y., Zhan T., “Exponential sums involving the Mobius function”, Indag. Math. (N.S.), 7:2 (1996), 271–278 | DOI | MR | Zbl
[5] Zhan T., “Davenport's theorem in short intervals”, Chin. Ann. of Math., 12 B:4 (1991), 421–431 | MR | Zbl
[6] Zhan T., “On the representation of large odd integer as a sum of three almost equal primes”, Acta Math Sinica. New ser., 7:3, 135–170 | MR
[7] Liu J. Y., Zhan T., “Estimation of exponential sums over primes in short intervals I”, Monatshefte für Mathematik, 127:1 (1999), 27–41 | DOI | MR | Zbl
[8] Lu G. S., Lao H. X., “On exponential sums over primes in short intervals”, Monatshefte fur Mathematik, 151:2 (2007), 153–164 | DOI | MR | Zbl
[9] Kumchev A V., “On Weyl sums over primes in short intervals”, Arithmetic in Shangrila, Proceedings of the 6th China-Japan Seminar on Number Theory, Series on Number Theory and Its Applications, 9, World Scientific, Singapore, 2012, 116–131 | MR
[10] Rakhmonov Z. Kh., Rakhmonov F. Z., “Short Cubic Exponential Sums over Primes”, Proceedings of the Steklov Institute of Mathematics, 296 (2017), 211–233 | DOI | DOI | MR | Zbl
[11] Rakhmonov Z. Kh., Rakhmonov F. Z., Zamonov B.M., “Estimates of short cubic double exponential sums with a long continuous summation”, Chebyshevskii Sbornik, 17:1 (2016), 217–231 | MR | Zbl
[12] Rakhmonov Z. Kh., Zamonov B. M., “Short cubic double exponential sums, with a long continuous summation”, Izvestiya Akademii nauk Respubliki Tajikistan. Otdeleniye fiziko-matematicheskikh, khimicheskikh, geologicheskikh i tekhnicheskikh nauk, 2014, no. 4(157), 7–23 (in Russian)
[13] Rakhmonov Z. Kh., Rakhmonov F. Z., “Sum of short exponential sums over prime numbers”, Doklady Mathematics, 90:3 (2014), 699–700 | DOI | MR | Zbl
[14] Rakhmonov Z. Kh., Rakhmonov F. Z., “The sum of short double trigonometric sums”, Doklady Akademii nauk Respubliki Tajikistan, 56:11 (2013), 853–860 (in Russian)
[15] Rahmonov F. Z., “Estimate of quadratic trigonometric sums with prime numbers”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 3, 56–60 | Zbl
[16] Rakhmonov Z. Kh., “Theorem on the mean value of $\psi(x,\chi)$ and its applications”, Russian Academy of Sciences. Izvestiya Mathematics, 43:1 (1994), 49–64 | DOI | MR | Zbl
[17] Vinogradov I. M., Special variants of the method of trigonometric sums, Izdat. “Nauka”, M., 1976, 119 pp. (Russian) | MR
[18] Mardjhanashvili K. K., “An estimate for an arithmetic sum”, Doklady Akad. Nauk SSSR, 22:7 (1939), 391–393