Stochastic trends based on fuzzy mathematics
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 92-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

Currently, there are a number of ways to determine trends and extremes in stochastic time series, which is not surprising, since time series trends are a fundamental characteristic of the dynamics of the process behind it. Real stochastic trends are not at all like ideal mathematical ones, because they contain violations. This does not bother the researcher, who initially has an adaptive perception of the fundamental properties of extremeness, continuity, connectedness, trend, etc. He will understand when the violation is insignificant and the trend continues, and when the violation interrupts the trend. In this paper, we propose a new approach to the recognition of stochastic trends, based on the mathematical construction of regression derivatives for a finite time series. Trends are sought using the derivative from the scenario of classical mathematical analysis.
Keywords: fuzzy mathematics, nearness measures, regression derivatives, trends.
@article{CHEB_2019_20_3_a6,
     author = {S. M. Agayan and Sh. R. Bogoutdinov and D. A. Kamaev and M. N. Dobrovolsky},
     title = {Stochastic trends based on fuzzy mathematics},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {92--106},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a6/}
}
TY  - JOUR
AU  - S. M. Agayan
AU  - Sh. R. Bogoutdinov
AU  - D. A. Kamaev
AU  - M. N. Dobrovolsky
TI  - Stochastic trends based on fuzzy mathematics
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 92
EP  - 106
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a6/
LA  - ru
ID  - CHEB_2019_20_3_a6
ER  - 
%0 Journal Article
%A S. M. Agayan
%A Sh. R. Bogoutdinov
%A D. A. Kamaev
%A M. N. Dobrovolsky
%T Stochastic trends based on fuzzy mathematics
%J Čebyševskij sbornik
%D 2019
%P 92-106
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a6/
%G ru
%F CHEB_2019_20_3_a6
S. M. Agayan; Sh. R. Bogoutdinov; D. A. Kamaev; M. N. Dobrovolsky. Stochastic trends based on fuzzy mathematics. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 92-106. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a6/

[1] Gumbel E. J., Statistics of extremes, Columbia Univ. Press, N. Y., 1958, 375 pp. | MR | Zbl

[2] Leadbetter M. R., Lindgren G., Rootzen H., Extremes and Related Properties of Random Sequences and Processes, Springer Series in Statistics, 1983, 336 pp. | MR | Zbl

[3] Lyubushin A. A., Analysis of data from geophysical and environmental monitoring systems, Mir, M., 2007, 228 pp.

[4] Mallat S., A Wavelet Tour of Signal Processing, Academic Press, 1999, 620 pp. | MR | Zbl

[5] Averkin A. N., Batyrshin I. Z., Blishun A. F., Silov V. B., Tarasov V. B., Fuzzy sets in control and artificial intelligence models, ed. D. A. Pospelov, Nauka, M., 1986, 312 pp.

[6] Ayvazyan S. A., Buchstaber V. M., Yenyukov I. S., Meshalkin L. D., Applied Statistics: Classification and Dimension Reduction, ed. Ayvazyan S. A., Finansy i statistika, M., 1989, 606 pp. | MR

[7] Agayan S. M., Soloviev A. A., Bogoutdinov Sh. R., Nikolova Y. I., “Regression derivatives and their application in the study of geomagnetic jerks”, Geomagnetism and aeronomy, 59:3 (2019), 383–392 | DOI

[8] Agayan S. M., Bogoutdinov Sh. R., Krasnoperov R. I., “Short introduction into DMA”, Russian journal of Earth sciences, 18 (2018), ES2001 | DOI