Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_3_a5, author = {V. V. Abramov and E. Yu. Liskina and S. S. Mamonov}, title = {On the problem of periodic solution's stability under {Hopf} bifurcation}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {78--91}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a5/} }
TY - JOUR AU - V. V. Abramov AU - E. Yu. Liskina AU - S. S. Mamonov TI - On the problem of periodic solution's stability under Hopf bifurcation JO - Čebyševskij sbornik PY - 2019 SP - 78 EP - 91 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a5/ LA - ru ID - CHEB_2019_20_3_a5 ER -
V. V. Abramov; E. Yu. Liskina; S. S. Mamonov. On the problem of periodic solution's stability under Hopf bifurcation. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 78-91. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a5/
[1] Demidovich B. P., “On an analogue of the Andronov — Witt theorem”, Doklady Akademii Nauk SSSR, 176:5 (1967), 994–996 | Zbl
[2] Hassard B. D., Kazarinoff N. D., Wan U.-H., Theory and applications of hopf bifurcation, Mir, M., 2002
[3] Krasnoselskii M. A., Kuznetsov N. A., Yumagulov M. G, “An operational method of analysis of stability of cycles in Hopf bifurcations”, Automatika i telemekhanika, 1996, no. 12, 15–24
[4] Dunaeva O. V., Shestakov I. E., “On the concepts of orbital stability and phase stability of motions of a dynamical system”, Doklady Akademii Nauk SSSR, 335:3 (1997), 33–341
[5] Mamonov S. S., Kharlamova A. O., “Forced synchronization of phase systems automotive equipment with landing”, Vestnik RGRTU, 2017, no. 62, 26–35
[6] Mamonov S. S., Kharlamova A. O., Ionova I. V., “Vibrational-revolution cycles phase system of differential equations”, Vestnik RAEN, 18:4 (2018), 51–57
[7] Khapaev M. M., Averaging in stability theory, Nauka, M., 1986 | MR
[8] Abramov V. V., “Stability of zero solution of periodic system of differential equations with small parameter”, Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 12:4 (2010), 49–54 | MR | Zbl
[9] Malkin I. G., Some problems of the theory of nonlinear oscillations, GITTL, M., 1956
[10] Abramov V. V., “Nonzero periodic solution of nonlinear system of differential equations”, Differ. Uravn., 33:11 (1997), 1572
[11] Abramov V. V., “Stability of small periodic solution”, Vestnik RAEN, 13:4 (2013), 3–5
[12] Zubov V. I., Theory of oscillations, Vysshaya Shkola, M., 1979
[13] Abramov, V. V., “On the stability of the solution in the parameter”, Izvestiya TulGU. Ser. Differentialnyiye Uravneniya i Prikladnyie Zadachi, 2005:1, 3–8
[14] Abramov V. V., “Branching of the periodic solution of a non-autonomous system with a small parameter”, Vestnik RAEN, 15:3 (2015), 3–7
[15] Krasnoselskii M. A., Shift operator on trajectories of differential equations, Nauka, M., 1966 | MR
[16] Halanay A., Wexler D., Qualitative theory of impulse systems, Mir, M., 1971