Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_3_a25, author = {A. Belov-Kanel and L. Rowen and Jie-Tai Yu}, title = {The {Jacobian} {Conjecture} for the free associative algebra (of~arbitrary characteristic)}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {390--393}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a25/} }
TY - JOUR AU - A. Belov-Kanel AU - L. Rowen AU - Jie-Tai Yu TI - The Jacobian Conjecture for the free associative algebra (of~arbitrary characteristic) JO - Čebyševskij sbornik PY - 2019 SP - 390 EP - 393 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a25/ LA - en ID - CHEB_2019_20_3_a25 ER -
A. Belov-Kanel; L. Rowen; Jie-Tai Yu. The Jacobian Conjecture for the free associative algebra (of~arbitrary characteristic). Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 390-393. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a25/
[1] Belov A., Bokut L., Rowen L., Yu J.-T., “The Jacobian Conjecture, together with Specht and Burnside-type problems”, Automorphisms in Birational and Affine Geometry (Bellavista Relax Hotel, Levico Terme–Trento, October 29th–November 3rd, 2012, Italy), Springer Proceedings in Mathematics Statistics, 79, Springer Verlag, 2014, 249–285, arXiv: 1308.0674 | DOI | MR | Zbl
[2] Belov A., Rowen L.H., Computational Aspects of Polynomial Identities, Research Notes in Mathematics, 9, AK Peters, 2005 | MR | Zbl
[3] Cohn P.M., Free Ideal Rings and Localization | MR
[4] Dicks W., Lewin J., “A jacobian conjecture for free associative algebras”, Communications in Algebra, 10:12 (1982), 1285–1306 | MR | Zbl
[5] Krause G.R., Lenagan T.H., Growth of Algebras and Gelfand-Kirillov Dimension, Graduate Studies in Mathematics, 22, Amer. Math. Soc., 2000 | MR | Zbl
[6] Orzech M., Ribes L., “Residual Finiteness and the Hopf Property in Rings”, Journal of Algebra, 15 (1970), 81–88 | MR | Zbl
[7] Orzech M., “Onto endomorphisms are isomorphosms”, Amer. Math. Monthly, 78 (1971), 357–362 | MR | Zbl
[8] Rowen L.H., Small L., Representable rings and GK dimension, 2015
[9] Schofield A., Representations of rings over skew fields, LMS Lecture note series, 92, 1985, 223 pp. | MR