The Jacobian Conjecture for the free associative algebra (of~arbitrary characteristic)
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 390-393
Voir la notice de l'article provenant de la source Math-Net.Ru
The object of this note is to use PI-theory to simplify the results
of Dicks and Lewin [4] on the automorphisms of the free
algebra $F\{ X\}$, namely that
if the Jacobian is invertible, then every
endomorphism is an epimorphism. We then show how the
same proof applies to a somewhat wider class of rings.
Keywords:
Automorphisms, polynomial algebras, free associative algebras.
@article{CHEB_2019_20_3_a25,
author = {A. Belov-Kanel and L. Rowen and Jie-Tai Yu},
title = {The {Jacobian} {Conjecture} for the free associative algebra (of~arbitrary characteristic)},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {390--393},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a25/}
}
TY - JOUR AU - A. Belov-Kanel AU - L. Rowen AU - Jie-Tai Yu TI - The Jacobian Conjecture for the free associative algebra (of~arbitrary characteristic) JO - Čebyševskij sbornik PY - 2019 SP - 390 EP - 393 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a25/ LA - en ID - CHEB_2019_20_3_a25 ER -
A. Belov-Kanel; L. Rowen; Jie-Tai Yu. The Jacobian Conjecture for the free associative algebra (of~arbitrary characteristic). Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 390-393. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a25/