The Jacobian Conjecture for the free associative algebra (of~arbitrary characteristic)
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 390-393

Voir la notice de l'article provenant de la source Math-Net.Ru

The object of this note is to use PI-theory to simplify the results of Dicks and Lewin [4] on the automorphisms of the free algebra $F\{ X\}$, namely that if the Jacobian is invertible, then every endomorphism is an epimorphism. We then show how the same proof applies to a somewhat wider class of rings.
Keywords: Automorphisms, polynomial algebras, free associative algebras.
@article{CHEB_2019_20_3_a25,
     author = {A. Belov-Kanel and L. Rowen and Jie-Tai Yu},
     title = {The {Jacobian} {Conjecture} for the free associative algebra (of~arbitrary characteristic)},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {390--393},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a25/}
}
TY  - JOUR
AU  - A. Belov-Kanel
AU  - L. Rowen
AU  - Jie-Tai Yu
TI  - The Jacobian Conjecture for the free associative algebra (of~arbitrary characteristic)
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 390
EP  - 393
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a25/
LA  - en
ID  - CHEB_2019_20_3_a25
ER  - 
%0 Journal Article
%A A. Belov-Kanel
%A L. Rowen
%A Jie-Tai Yu
%T The Jacobian Conjecture for the free associative algebra (of~arbitrary characteristic)
%J Čebyševskij sbornik
%D 2019
%P 390-393
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a25/
%G en
%F CHEB_2019_20_3_a25
A. Belov-Kanel; L. Rowen; Jie-Tai Yu. The Jacobian Conjecture for the free associative algebra (of~arbitrary characteristic). Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 390-393. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a25/