The Jacobian Conjecture for the free associative algebra (of~arbitrary characteristic)
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 390-393.

Voir la notice de l'article provenant de la source Math-Net.Ru

The object of this note is to use PI-theory to simplify the results of Dicks and Lewin [4] on the automorphisms of the free algebra $F\{ X\}$, namely that if the Jacobian is invertible, then every endomorphism is an epimorphism. We then show how the same proof applies to a somewhat wider class of rings.
Keywords: Automorphisms, polynomial algebras, free associative algebras.
@article{CHEB_2019_20_3_a25,
     author = {A. Belov-Kanel and L. Rowen and Jie-Tai Yu},
     title = {The {Jacobian} {Conjecture} for the free associative algebra (of~arbitrary characteristic)},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {390--393},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a25/}
}
TY  - JOUR
AU  - A. Belov-Kanel
AU  - L. Rowen
AU  - Jie-Tai Yu
TI  - The Jacobian Conjecture for the free associative algebra (of~arbitrary characteristic)
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 390
EP  - 393
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a25/
LA  - en
ID  - CHEB_2019_20_3_a25
ER  - 
%0 Journal Article
%A A. Belov-Kanel
%A L. Rowen
%A Jie-Tai Yu
%T The Jacobian Conjecture for the free associative algebra (of~arbitrary characteristic)
%J Čebyševskij sbornik
%D 2019
%P 390-393
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a25/
%G en
%F CHEB_2019_20_3_a25
A. Belov-Kanel; L. Rowen; Jie-Tai Yu. The Jacobian Conjecture for the free associative algebra (of~arbitrary characteristic). Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 390-393. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a25/

[1] Belov A., Bokut L., Rowen L., Yu J.-T., “The Jacobian Conjecture, together with Specht and Burnside-type problems”, Automorphisms in Birational and Affine Geometry (Bellavista Relax Hotel, Levico Terme–Trento, October 29th–November 3rd, 2012, Italy), Springer Proceedings in Mathematics Statistics, 79, Springer Verlag, 2014, 249–285, arXiv: 1308.0674 | DOI | MR | Zbl

[2] Belov A., Rowen L.H., Computational Aspects of Polynomial Identities, Research Notes in Mathematics, 9, AK Peters, 2005 | MR | Zbl

[3] Cohn P.M., Free Ideal Rings and Localization | MR

[4] Dicks W., Lewin J., “A jacobian conjecture for free associative algebras”, Communications in Algebra, 10:12 (1982), 1285–1306 | MR | Zbl

[5] Krause G.R., Lenagan T.H., Growth of Algebras and Gelfand-Kirillov Dimension, Graduate Studies in Mathematics, 22, Amer. Math. Soc., 2000 | MR | Zbl

[6] Orzech M., Ribes L., “Residual Finiteness and the Hopf Property in Rings”, Journal of Algebra, 15 (1970), 81–88 | MR | Zbl

[7] Orzech M., “Onto endomorphisms are isomorphosms”, Amer. Math. Monthly, 78 (1971), 357–362 | MR | Zbl

[8] Rowen L.H., Small L., Representable rings and GK dimension, 2015

[9] Schofield A., Representations of rings over skew fields, LMS Lecture note series, 92, 1985, 223 pp. | MR