Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_3_a20, author = {O. V. Kravtsova and I. V. Sheveleva}, title = {On some $3$-primitive projective planes}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {316--332}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a20/} }
O. V. Kravtsova; I. V. Sheveleva. On some $3$-primitive projective planes. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 316-332. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a20/
[1] Mazurov V. D., Khukhro E. I., Unsolved problems in group theory: the Kourovka notebook, Russian Academy of Sciences, Siberian Branch, Institute of Mathematics, 2006
[2] Hughes D. R., Piper F. C., Projective planes, Springer-Verlag, New-York, 1973 | MR | Zbl
[3] Luneburg H., Translation planes, Springer-Verlag, New-York, 1980 | MR | Zbl
[4] Biliotti M., Jha V., Johnson N. L., Menichetti G., “A structure theory for two-dimensional translation planes of order $q^2$ that admit collineation group of order $q^2$”, Geom. Dedicata, 29 (1989), 7–43 | MR | Zbl
[5] Huang H., Johnson N. L., “8 semifield planes of order $8^2$”, Discrete Math., 80:1 (1990), 69–79 | MR | Zbl
[6] Cordero M., “Matrix spread sets of $p$-primitive semifield planes”, Internat. J. Math., Math. Sci., 20:2 (1997), 293–298 | MR
[7] Kravtsova O. V., “Semifield planes of odd order that admit the autotopism subgroup isomorphic to $A_4$”, Russian Mathematics (Iz. VUZ), 2016, no. 9, 10–25 | Zbl
[8] Podufalov N. D., Busarkina I. V., “The autotopism groups of a $p$-primitive plane of order $q^4$”, Algebra and Logic, 1996:3, 188–195 | MR | Zbl
[9] Podufalov N. D., Busarkina I. V., Durakov B. K., “On the autotopism group of a semifield $p$-primitive plane”, Ann. of Interregional scientific conference "Research on Analysis and Algebra", TSU, Tomsk, 1998, 190–195
[10] Podufalov N. D., “On spread sets and collineations of projective planes”, Contem. Math., 131:1 (1992), 697–705 | MR | Zbl
[11] Podufalov N. D., Durakov B. K., Kravtsova O. V., Durakov E. B., “On the semifield planes of order $16^2$”, Siberian Mathematical Journal, 37:3 (1996), 616–623 | MR | Zbl
[12] Hiramine Y., Matsumoto M., Oyama T., “On some extension of 1-sread sets”, Osaka J. Math., 24 (1987), 123–137 | MR | Zbl
[13] Johnson N. L., “Sequences of derivable translation plans”, Osaka J. Math., 25 (1988), 519–530 | MR | Zbl
[14] Johnson N. L., “Semifield plans of characteristic $p$ admiting $p$-primitive Baer collineation”, Osaka J. Math., 26 (1989), 281–285 | MR | Zbl
[15] Cordero M., “Semifield plans of order $p^4$ that admit a $p$-primitive Baer collineation”, Osaka J. Math., 28 (1991), 305–321 | MR | Zbl
[16] Cordero-Vourtsanis M., “The autotopizm group of $p$-primitive semifield plans of order $p^4$”, ARS Combinatoria, 32 (1991), 57–64 | MR | Zbl
[17] Levchuk V. M., Kravtsova O. V., “Problems on structure of finite quasifelds and projective translation planes”, Lobachevskii Journal of Mathematics, 38:4 (2017), 688–698 | MR | Zbl
[18] Kravtsova O. V., Kurshakova P. K., “On the problem of isomorphism of semifield planes”, Vestnik Krasnoyarskogo Gos. Techn. Univ., Krasnoyarsk, 42 (2006), 13–19
[19] Kravtsova O. V., “On automorphisms of semifields and semifield planes”, Siberian Electronic Mathematical Reports, 13 (2016), 1300–1313 | MR | Zbl
[20] Albert A. A., “Finite division algebras and finite planes”, Proc. Sympos. Appl. Math., 10, AMS, Provid. R.I., 1960, 53–70 | MR