On some $3$-primitive projective planes
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 316-332.

Voir la notice de l'article provenant de la source Math-Net.Ru

We evolve an approach to construction and classification of semifield projective planes with the use of the linear space and spread set. This approach is applied to the problem of existance for a projective plane with the fixed restrictions on collineation group. A projective plane is said to be semifield plane if its coordinatizing set is a semifield, or division ring. It is an algebraic structure with two binary operation which satisfies all the axioms for a skewfield except (possibly) associativity of multiplication. A collineation of a projective plane of order $p^{2n}$ ($p>2$ be prime) is called Baer collineation if it fixes a subplane of order $p^n$ pointwise. If the order of a Baer collineation divides $p^n-1$ but does not divide $p^i-1$ for $i$ then such a collineation is called $p$-primitive. A semifield plane that admit such collineation is a $p$-primitive plane. M. Cordero in 1997 construct 4 examples of $3$-primitive semifield planes of order $81$ with the nucleus of order $9$, using a spread set formed by $2\times 2$-matrices. In the paper we consider the general case of $3$-primitive semifield plane of order $81$ with the nucleus of order $\leq 9$ and a spread set in the ring of $4\times 4$-matrices. We use the earlier theoretical results obtained independently to construct the matrix representation of the spread set and autotopism group. We determine $8$ isomorphism classes of $3$-primitive semifield planes of order $81$ including M. Cordero examples. We obtain the algorithm to optimize the identification of pair-isomorphic semifield planes, and computer realization of this algorithm. It is proved that full collineation group of any semifield plane of order $81$ is solvable, the orders of all autotopisms are calculated. We describe the structure of $8$ non-isotopic semifields of order $81$ that coordinatize $8$ non-isomorphic $3$-primitive semifield planes of order $81$. The spectra of its multiplicative loops of non-zero elements are calculated, the left-, right-ordered spectra, the maximal subfields and automorphisms are found. The results obtained illustrate G. Wene hypothesis on left or right primitivity for any finite semifield and demonstrate some anomalous properties. The methods and algorithsm demonstrated can be used for construction and investigation of semifield planes of odd order $p^n$ for $p\geq 3$ and $n\geq 4$.
Keywords: semifield plane, collineation, autotopism, Baer subplane.
@article{CHEB_2019_20_3_a20,
     author = {O. V. Kravtsova and I. V. Sheveleva},
     title = {On some $3$-primitive projective planes},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {316--332},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a20/}
}
TY  - JOUR
AU  - O. V. Kravtsova
AU  - I. V. Sheveleva
TI  - On some $3$-primitive projective planes
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 316
EP  - 332
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a20/
LA  - ru
ID  - CHEB_2019_20_3_a20
ER  - 
%0 Journal Article
%A O. V. Kravtsova
%A I. V. Sheveleva
%T On some $3$-primitive projective planes
%J Čebyševskij sbornik
%D 2019
%P 316-332
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a20/
%G ru
%F CHEB_2019_20_3_a20
O. V. Kravtsova; I. V. Sheveleva. On some $3$-primitive projective planes. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 316-332. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a20/

[1] Mazurov V. D., Khukhro E. I., Unsolved problems in group theory: the Kourovka notebook, Russian Academy of Sciences, Siberian Branch, Institute of Mathematics, 2006

[2] Hughes D. R., Piper F. C., Projective planes, Springer-Verlag, New-York, 1973 | MR | Zbl

[3] Luneburg H., Translation planes, Springer-Verlag, New-York, 1980 | MR | Zbl

[4] Biliotti M., Jha V., Johnson N. L., Menichetti G., “A structure theory for two-dimensional translation planes of order $q^2$ that admit collineation group of order $q^2$”, Geom. Dedicata, 29 (1989), 7–43 | MR | Zbl

[5] Huang H., Johnson N. L., “8 semifield planes of order $8^2$”, Discrete Math., 80:1 (1990), 69–79 | MR | Zbl

[6] Cordero M., “Matrix spread sets of $p$-primitive semifield planes”, Internat. J. Math., Math. Sci., 20:2 (1997), 293–298 | MR

[7] Kravtsova O. V., “Semifield planes of odd order that admit the autotopism subgroup isomorphic to $A_4$”, Russian Mathematics (Iz. VUZ), 2016, no. 9, 10–25 | Zbl

[8] Podufalov N. D., Busarkina I. V., “The autotopism groups of a $p$-primitive plane of order $q^4$”, Algebra and Logic, 1996:3, 188–195 | MR | Zbl

[9] Podufalov N. D., Busarkina I. V., Durakov B. K., “On the autotopism group of a semifield $p$-primitive plane”, Ann. of Interregional scientific conference "Research on Analysis and Algebra", TSU, Tomsk, 1998, 190–195

[10] Podufalov N. D., “On spread sets and collineations of projective planes”, Contem. Math., 131:1 (1992), 697–705 | MR | Zbl

[11] Podufalov N. D., Durakov B. K., Kravtsova O. V., Durakov E. B., “On the semifield planes of order $16^2$”, Siberian Mathematical Journal, 37:3 (1996), 616–623 | MR | Zbl

[12] Hiramine Y., Matsumoto M., Oyama T., “On some extension of 1-sread sets”, Osaka J. Math., 24 (1987), 123–137 | MR | Zbl

[13] Johnson N. L., “Sequences of derivable translation plans”, Osaka J. Math., 25 (1988), 519–530 | MR | Zbl

[14] Johnson N. L., “Semifield plans of characteristic $p$ admiting $p$-primitive Baer collineation”, Osaka J. Math., 26 (1989), 281–285 | MR | Zbl

[15] Cordero M., “Semifield plans of order $p^4$ that admit a $p$-primitive Baer collineation”, Osaka J. Math., 28 (1991), 305–321 | MR | Zbl

[16] Cordero-Vourtsanis M., “The autotopizm group of $p$-primitive semifield plans of order $p^4$”, ARS Combinatoria, 32 (1991), 57–64 | MR | Zbl

[17] Levchuk V. M., Kravtsova O. V., “Problems on structure of finite quasifelds and projective translation planes”, Lobachevskii Journal of Mathematics, 38:4 (2017), 688–698 | MR | Zbl

[18] Kravtsova O. V., Kurshakova P. K., “On the problem of isomorphism of semifield planes”, Vestnik Krasnoyarskogo Gos. Techn. Univ., Krasnoyarsk, 42 (2006), 13–19

[19] Kravtsova O. V., “On automorphisms of semifields and semifield planes”, Siberian Electronic Mathematical Reports, 13 (2016), 1300–1313 | MR | Zbl

[20] Albert A. A., “Finite division algebras and finite planes”, Proc. Sympos. Appl. Math., 10, AMS, Provid. R.I., 1960, 53–70 | MR