Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_2_a32, author = {F. D. Rukhovich}, title = {Outer billiards outside regular decagon: periodicity of almost all orbits and existence of aperiodic orbit}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {406--441}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a32/} }
TY - JOUR AU - F. D. Rukhovich TI - Outer billiards outside regular decagon: periodicity of almost all orbits and existence of aperiodic orbit JO - Čebyševskij sbornik PY - 2019 SP - 406 EP - 441 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a32/ LA - ru ID - CHEB_2019_20_2_a32 ER -
F. D. Rukhovich. Outer billiards outside regular decagon: periodicity of almost all orbits and existence of aperiodic orbit. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 406-441. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a32/
[1] Rukhovich F., “Outer billiards outside a regular octagon: periodicity of almost all orbits and existence of an aperiodic orbit”, Doklady Mathematics, 98:1 (2018), 334–337 | Zbl
[2] Rukhovich F., Outer billiards outside regular dodecagon: computer proof of periodicity of almost all orbits and existence of an aperiodic point, 2018, arXiv: 1809.03791
[3] Tabachnikov S., “Outer billiards”, Russian Math. Surveys, 48:6 (294) (1993), 75–102 | MR | Zbl
[4] J. Moser, Is the solar system stable?, Math. Intell., 1 (1978), 65–71 | DOI | MR
[5] Schwartz R. E., Outer billiards on kites, Annals of Mathematics Studies, 171, Princeton University Press, Princeton, NJ, 2009 | MR | Zbl
[6] Dolgopyat D., Fayad B., “Unbounded orbits for semicircular outer billiard”, Ann. Henri Poincare, 10:2 (2009), 357–375 | MR | Zbl
[7] Bedaride N., Cassaigne J., “Outer billiards outside regular regular polygons”, Journal of the London Mathematical Society, 2011 | MR | Zbl
[8] Tabachnikov S., Geometry and Billiards, Student Mathematical Library, 30, American Mathematical Society, Providence, RI, 2005 | MR | Zbl
[9] Tabachnikov S., “On the dual billiard problem”, Adv. Math., 115:2 (1995), 221–249 | MR | Zbl
[10] Bedaride N., Cassaigne J., Outer billiards outside regular regular polygons, 2011, arXiv: 0912.0563 | MR | Zbl
[11] R. E. Schwartz, Outer Billiards, Arithmetic Graph and the Octagon, 2010, arXiv: 1006.2782
[12] Schwartz R. E., The octagonal PETs, Mathematical Surveys and Monographs, 197, American Mathematical Society, Providence, RI, 2014 | MR
[13] N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics, 1794, eds. V. Berthé, S. Ferenczi, C. Mauduit, A. Siegel, Springer-Verlag, Berlin, 2002 | MR | Zbl
[14] Shaidenko. A, F. Vivaldi, “Global stability of a class of discontinuous dual billiards”, Comm. Math. Phys., 110 (1987), 625–640 | MR | Zbl
[15] Kolodziej R., “The antibilliard outside a polygon”, Bull. Pol. Acad. Sci., 37 (1989), 163–168 | MR | Zbl
[16] Gutkin E., Simanyi N., “Dual polygonal billiards and necklace dynamics”, Comm. Math. Phys., 143 (1991), 431–450 | MR
[17] Jeong I. J., “Outer billiards with contraction: regular polygons”, Dynamical Systems, 33:4 (2015), 565–580 | DOI | MR