On upper bounds for the number of minimal polynomials with bounded derivative at a root
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 47-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider the problem of obtaining estimates for the number of minimal integer polynomials $P(x)$ of degree $n$ and height not exceeding $Q$, such that the derivative is bounded at a root $\alpha$, i.e. $\left| P'(\alpha) \right| Q^{1-v}$ for some $v > 0$. This problem occurs naturally in many problems of metric number theory related to obtaining effective estimates for the measure of points at which integral polynomials from some class take small values. For example, in 1976 R. Baker has used such an estimate for obtaining an upper bound for the Hasdorff dimension in Baker-Schdimt problem. We prove that the number of polynomials $P(x)$ defined above having roots $\alpha$ on the interval $\left( -\frac12; \frac12 \right)$ doesn't exceed $c_1(n)Q^{n+1-\frac35 v}$ for $Q>Q_0(n)$ and $1.5 \le v \le \frac12 (n+1)$. The result is based on an imrovement to the lemma on small integer polynomial divisor extraction from A.O. Gelfond's monograph "Transcendetal and algebraic numbers".
Keywords: Diophantine approximation, Hausdorff dimension, transcendental numbers, resultant, Sylvester matrix, irreducible divisor, Gelfond's lemma.
@article{CHEB_2019_20_2_a3,
     author = {D. V. Vasilyev and A. S. Kudin},
     title = {On upper bounds for the number of minimal polynomials with bounded derivative at a root},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {47--54},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a3/}
}
TY  - JOUR
AU  - D. V. Vasilyev
AU  - A. S. Kudin
TI  - On upper bounds for the number of minimal polynomials with bounded derivative at a root
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 47
EP  - 54
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a3/
LA  - ru
ID  - CHEB_2019_20_2_a3
ER  - 
%0 Journal Article
%A D. V. Vasilyev
%A A. S. Kudin
%T On upper bounds for the number of minimal polynomials with bounded derivative at a root
%J Čebyševskij sbornik
%D 2019
%P 47-54
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a3/
%G ru
%F CHEB_2019_20_2_a3
D. V. Vasilyev; A. S. Kudin. On upper bounds for the number of minimal polynomials with bounded derivative at a root. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 47-54. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a3/

[1] Baker R., “Sprindzuk's theorem and Hausdorff dimension”, Mathematika, 23:2 (1976), 184–197 | MR | Zbl

[2] V. Beresnevich, V. Bernik, F. Götze, “The distribution of close conjugate algebraic numbers”, Compos. Math., 146:5 (2010), 1165–1179 | MR | Zbl

[3] V. Beresnevich, V. Bernik, F. Götze, “Integral polynomials with small discriminants and resultants”, Advances in Mathematics, 298 (2016), 393–412 | MR | Zbl

[4] V. I. Bernik, “Application of the Hausdorff dimension in the theory of Diophantine approximations”, Acta Arith., 42:3 (1983), 219–253 | MR | Zbl

[5] Bernik V., Vasiliev D., Kudin A., “On the number of integral polynomials of given degree and bounded height with small value of derivative at root of polynomial”, Trudy Instituta matematiki NAN Belarusi, 22:2 (2014), 3–8 | MR | Zbl

[6] V. I. Bernik, F.. Götze, “Distribution of real algebraic numbers of arbitrary degree in short intervals”, Izvestiya: Mathematics, 79:1 (2015), 18–39 | MR | Zbl

[7] Y. Bugeaud, M. Mignotte, “Polynomial root separation”, Int. J. Number Theory, 6:3 (2010), 587–602 | MR | Zbl

[8] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics, 45, Cambridge University Press, Cambridge, 1957 | MR | Zbl

[9] J. H. Evertse, “Distances between the conjugates of an algebraic number”, Publ. Math. Debrecen, 65 (2004), 323–340 | MR | Zbl

[10] Gelfond A., Transcendental and Algebraic Numbers, M., 1952 | MR

[11] W. Schmidt, Diophantine approximation, Lecture Notes in Math., 785, Springer, Berlin, 1980 | MR | Zbl

[12] Sprindzhuk V., Mahler's Problem in Metric Number Theory, Nauka i Tehnika, Minsk, 1967 | MR

[13] K. I. Tishchenko, “On approximation of real numbers by algebraic numbers of bounded degree”, Acta Arith., 94:1 (2000), 1–24 | MR | Zbl