The mean value of products of Legendre symbol over primes
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 336-347
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper the asymptotical formula as $N\to\infty$ for the number of primes $p\leq N,$ satisfying to the system of equations
$$
\left(\frac{p+k_s}{q_s}\right)=\vartheta_s, s=1,\dots ,r,
$$
where $q_1,\dots ,q_r$ — different primes, $\vartheta_s$ may be take only two values $+1$ or $-1,$ but natural numbers $k_s$ take noncongruent values on modulus $q_s, s=1,\dots ,r,$ i.e. $k_s\not\equiv k_t\pmod{q_s}, t=1,\dots ,r,$
is found.
The finding asymptotics is nontrivial as $q=q_1\dots q_r\gg N^{1+\varepsilon},$ moreover the number of $r$ may grow up as $o(\ln N).$ Here $\varepsilon>0$ is an arbitrary constant.
Keywords:
the Legendre symbol, the Vinogradov method of estimating on sums over primes, the Dirichlet's character, the Vinogradov's combinatorial sieve, the method of double sums.
@article{CHEB_2019_20_2_a25,
author = {V. N. Chubarikov},
title = {The mean value of products of {Legendre} symbol over primes},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {336--347},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a25/}
}
V. N. Chubarikov. The mean value of products of Legendre symbol over primes. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 336-347. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a25/