On almost locally solvable Lie algebras with null Jacobson radical of a locally nilpotent radical for Lie algebras
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 284-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper proves an analogue of the theorem of F. Kubo [1] for almost locally solvable Lie algebras with zero Jacobson radical. The first section aims to clarify some aspects of the homological description of the Jacobson radical. We prove a theorem generalizing E. Marshall's theorem to the case of almost locally solvable Lie algebras, the consequence of which is an analogue of Kubo's theorem. In the second section, we investigate some properties of a locally nilpotent radical of a Lie algebra. Primitive Lie algebras are considered. Examples are given to show that infinite-dimensional commutative Lie algebras are primitive over any fields; finite-dimensional Abelian algebra, dimensions greater than 1, over an algebraically closed field is not primitive; an example of a non-Artin noncommutative Lie algebra being primitive. It is shown that for special Lie algebras over the characteristic field, the zero $PI$-irreducibly presented radical coincides with the locally nilpotent one. An example of a Lie algebra whose locally nilpotent radical is neither locally nilpotent nor locally solvable is given. Sufficient conditions for the primitiveness of a Lie algebra are given, examples of primitive Lie algebras and a non-primitive Lie algebra are given.
Keywords: Lie algebra, primitive Lie algebra, special Lie algebra, irreducible $PI$-representation, Jacobson radical, locally nilpotent radical, reductive Lie algebra, almost locally solvable Lie algebra.
@article{CHEB_2019_20_2_a21,
     author = {O. A. Pikhtilkova and E. V. Meshcherina and A. A. Gorelik},
     title = {On almost locally solvable {Lie} algebras with null {Jacobson} radical of a locally nilpotent radical for {Lie} algebras},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {284--297},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a21/}
}
TY  - JOUR
AU  - O. A. Pikhtilkova
AU  - E. V. Meshcherina
AU  - A. A. Gorelik
TI  - On almost locally solvable Lie algebras with null Jacobson radical of a locally nilpotent radical for Lie algebras
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 284
EP  - 297
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a21/
LA  - ru
ID  - CHEB_2019_20_2_a21
ER  - 
%0 Journal Article
%A O. A. Pikhtilkova
%A E. V. Meshcherina
%A A. A. Gorelik
%T On almost locally solvable Lie algebras with null Jacobson radical of a locally nilpotent radical for Lie algebras
%J Čebyševskij sbornik
%D 2019
%P 284-297
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a21/
%G ru
%F CHEB_2019_20_2_a21
O. A. Pikhtilkova; E. V. Meshcherina; A. A. Gorelik. On almost locally solvable Lie algebras with null Jacobson radical of a locally nilpotent radical for Lie algebras. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 284-297. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a21/

[1] F. Kubo, “Infinite-dimensional Lie algebras with null Jacobson radical”, Bull. Kyushu Inst. Technol. Math. Nat. Sci., 38 (1991), 23–30 | MR | Zbl

[2] Burbaki N., Lie groups and algebras (chapters I–III), Mir, M., 1976, 496 pp.

[3] E. I. Marshall, “The Frattini subalgebras of a Lie algebra”, J. London Math. Soc., 42 (1967), 416–422 | MR | Zbl

[4] N. Kamiya, “On the Jacobson radicals of infinite-dimensional Lie algebras”, Hiroshima Math. J., 9 (1979), 37–40 | MR | Zbl

[5] Latyshev V. N., “On Lie Algebras with Identities ratios”, Sib. mat. magazine, 4:4 (1963), 821–829 | Zbl

[6] Pikhtilkov S. A., “On special Lie algebras”, Uspehi Mat. nauk, 36:6 (1981), 225–226 | MR | Zbl

[7] Yu. V. Billig, “On the homomorphic image of a special Lie algebras”, Mat. sbornik, 136:3 (1988), 320–323 | Zbl

[8] Jacobson N., Lie Algebras, Mir, M., 1964

[9] Bakhturin Yu. A., Identities in Lie algebras, Nauka, M., 1985, 447 pp. | MR

[10] Terekhova Yu. A., “On the Levi theorem for special Lie algebras”, Algorithmic Problems group and semigroup theories, Interuniversity collection of scientific works, Izd-vo TGPI im. L. N. Tolstogo, Tula, 1994, 97–103

[11] Pikhtilkov S. A., “On a locally nilpotent radical special Lie algebras”, Fundamental and Applied Mathematics, 8:3 (2002), 769–782 | MR | Zbl

[12] D. A. Towers, “Maximal subalgebras and chief factors of Lie algebras”, J. Pure Appl. Algebra, 220 (2016), 482–493 | MR | Zbl

[13] Beidar K. I., Pikhtilkov S. A., “Primary radical special Lie algebras”, Fundamental and applied mathematics, 6:3 (2000), 643–648 | MR | Zbl

[14] Herstein I., Noncommutative rings, Mir, M., 1972, 191 pp. | MR

[15] Dixmier J., Universal enveloping algebras, Mir, M., 1978

[16] Pikhtilkov S. A., “Primitive free associative algebra with a finite number of generators”, UMN, 1974, no. 1, 183–184