Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_2_a2, author = {N. V. Budarina}, title = {Exact bounds for the special class of integer polynomials with given discriminant}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {39--46}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a2/} }
N. V. Budarina. Exact bounds for the special class of integer polynomials with given discriminant. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 39-46. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a2/
[1] V. V. Beresnevich, V. I. Bernik, F. Goetze, “Simultaneous approximations of zero by an integral polynomial, its derivative, and small values of discriminants”, Dokl. Nats. Nauk Belarusi, 54:2 (2010), 26–28 ; 125 | MR | Zbl
[2] V. V. Beresnevich, V. I. Bernik, F. Goetze, “Integral polynomials with small discriminants and resultants”, Advances in Mathematics, 298 (2016), 393–412 | MR | Zbl
[3] V. I. Bernik, “An application of Hausdorff dimension in the theory of Diophantine approximation”, Acta Arith., 42 (1983), 219–253 | MR | Zbl
[4] V. I. Bernik, “The exact order of approximating zero by values of integral polynomials”, Acta Arith., 53 (1989), 17–28 | MR | Zbl
[5] V. I. Bernik, M. M. Dodson, Metric Diophantine approximation on manifolds, Cambridge Tracts in Mathematics, 137, CUP, Cambridge, 1999, 172 pp. | MR
[6] V. I. Bernik, F. Goetze, O. Kukso, “Lower bounds for the number of integral polynomials with given order of discriminants”, Acta Arith., 133 (2008), 375–390 | MR | Zbl
[7] V. I. Bernik, F. Goetze, O. Kukso, “On the divisibility of the discriminant of an integral polynomial by prime powers”, Lith. Math. J., 48 (2008), 380–396 | MR | Zbl
[8] N. Budarina, D. Dickinson, V. I. Bernik, “Simultaneous Diophantine approximation in the real, complex and $p$-adic fields”, Proc. Math. Cambridge Philos. Soc., 149 (2010), 193–216 | MR | Zbl
[9] N. Budarina, D. Dickinson, Yuan Jin Yuan, “On the number of polynomials with small discriminants in the euclidean and $p$-adic metrics”, Acta Mathematica Sinica, 28 (2012), 469–476 | MR | Zbl
[10] V. I. Bernik, N. Budarina, H. O'Donnell, “Discriminants of polynomials in the Archimedean and non-Archimedean metrics”, Acta Math. Hungar., 154:2 (2018), 265–278 | MR | Zbl
[11] Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathematics, 160, Cambridge University Press, 2004 (Cambridge) | MR | Zbl
[12] F. Goetze, D. Kaliada, O. Kukso, “The asymptotic number of integral cubic polynomials with bounded heights and discriminants”, Lith. Math. J., 54 (2014), 150–165 | MR | Zbl
[13] F. Goetze, D. Kaliada, M. Korolev, On the number of quadratic polynomials with bounded discriminants, arXiv: 1308.2091v1
[14] V. G. Sprindzuk, Mahler's problem in metric number theory, Translated from the Russian by B. Volkmann, Translations of Mathematical Monographs, 25, American Mathematical Society, Providence, R.I., 1969 | MR
[15] B. L. Van Der Waerden, Algebra, Springer-Verlag, Berlin–Heidelberg, 1971 | MR | Zbl