Exact bounds for the special class of integer polynomials with given discriminant
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 39-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper bound and lower bound for the number of integer polynomials which have only two close to each other roots, and small discriminant in terms of the Euclidean metric is obtained.
Keywords: Diophantine approximation, discriminant of polynomial.
@article{CHEB_2019_20_2_a2,
     author = {N. V. Budarina},
     title = {Exact bounds for the special class of integer polynomials with given discriminant},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {39--46},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a2/}
}
TY  - JOUR
AU  - N. V. Budarina
TI  - Exact bounds for the special class of integer polynomials with given discriminant
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 39
EP  - 46
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a2/
LA  - en
ID  - CHEB_2019_20_2_a2
ER  - 
%0 Journal Article
%A N. V. Budarina
%T Exact bounds for the special class of integer polynomials with given discriminant
%J Čebyševskij sbornik
%D 2019
%P 39-46
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a2/
%G en
%F CHEB_2019_20_2_a2
N. V. Budarina. Exact bounds for the special class of integer polynomials with given discriminant. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 39-46. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a2/

[1] V. V. Beresnevich, V. I. Bernik, F. Goetze, “Simultaneous approximations of zero by an integral polynomial, its derivative, and small values of discriminants”, Dokl. Nats. Nauk Belarusi, 54:2 (2010), 26–28 ; 125 | MR | Zbl

[2] V. V. Beresnevich, V. I. Bernik, F. Goetze, “Integral polynomials with small discriminants and resultants”, Advances in Mathematics, 298 (2016), 393–412 | MR | Zbl

[3] V. I. Bernik, “An application of Hausdorff dimension in the theory of Diophantine approximation”, Acta Arith., 42 (1983), 219–253 | MR | Zbl

[4] V. I. Bernik, “The exact order of approximating zero by values of integral polynomials”, Acta Arith., 53 (1989), 17–28 | MR | Zbl

[5] V. I. Bernik, M. M. Dodson, Metric Diophantine approximation on manifolds, Cambridge Tracts in Mathematics, 137, CUP, Cambridge, 1999, 172 pp. | MR

[6] V. I. Bernik, F. Goetze, O. Kukso, “Lower bounds for the number of integral polynomials with given order of discriminants”, Acta Arith., 133 (2008), 375–390 | MR | Zbl

[7] V. I. Bernik, F. Goetze, O. Kukso, “On the divisibility of the discriminant of an integral polynomial by prime powers”, Lith. Math. J., 48 (2008), 380–396 | MR | Zbl

[8] N. Budarina, D. Dickinson, V. I. Bernik, “Simultaneous Diophantine approximation in the real, complex and $p$-adic fields”, Proc. Math. Cambridge Philos. Soc., 149 (2010), 193–216 | MR | Zbl

[9] N. Budarina, D. Dickinson, Yuan Jin Yuan, “On the number of polynomials with small discriminants in the euclidean and $p$-adic metrics”, Acta Mathematica Sinica, 28 (2012), 469–476 | MR | Zbl

[10] V. I. Bernik, N. Budarina, H. O'Donnell, “Discriminants of polynomials in the Archimedean and non-Archimedean metrics”, Acta Math. Hungar., 154:2 (2018), 265–278 | MR | Zbl

[11] Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathematics, 160, Cambridge University Press, 2004 (Cambridge) | MR | Zbl

[12] F. Goetze, D. Kaliada, O. Kukso, “The asymptotic number of integral cubic polynomials with bounded heights and discriminants”, Lith. Math. J., 54 (2014), 150–165 | MR | Zbl

[13] F. Goetze, D. Kaliada, M. Korolev, On the number of quadratic polynomials with bounded discriminants, arXiv: 1308.2091v1

[14] V. G. Sprindzuk, Mahler's problem in metric number theory, Translated from the Russian by B. Volkmann, Translations of Mathematical Monographs, 25, American Mathematical Society, Providence, R.I., 1969 | MR

[15] B. L. Van Der Waerden, Algebra, Springer-Verlag, Berlin–Heidelberg, 1971 | MR | Zbl