On some characters of group representations
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 234-243.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study realization fields and integrality of characters of discrete and finite subgroups of $SL_2(\bf C )$ and related lattices with a focus on on the integrality of characters of finite groups $G$. Theory of characters of finite and infinite groups plays the central role in the group theory and the theory of representations of finite groups and associative algebras. The classical results are related to some arithmetic problems: the description of integral representations are essential for finite groups over rings of integers in number fields, local fields, or, more generally, for Dedekind rings. A substantial part of this paper is devoted to the following question, coming back to W. Burnside: whether every representation over a number field can be made integral. Given a linear representation $\rho: G\to GL_n(K)$ of finite group $G$ over a number field $K/\bf Q$, is it conjugate in $GL_n(K)$ to a representation $\rho: G\to GL_n(O_K)$ over the ring of integers $O_K$? To study this question, it is possible to translate integrality into the setting of lattices. This question is closely related to globally irreducible representations; the concept introduced by J. G. Thompson and B. Gross, was developed by Pham Huu Tiep and generalized by F. Van Oystaeyen and A.E. Zalesskii, and there are still many open questions. We are interested in the arithmetic aspects of the integral realizability of representations of finite groups, splitting fields, and, in particular, consider the conditions of realizability in the terms of Hilbert symbols and quaternion algebras.
Keywords: hyperbolic lattices, groups generated by reflections, characters of discrete and finite groups, Schur index, Dedekind ring, globally irreducible representations, simple algebras over number fields, quaternions, lattices in simple algebras, Hilbert symbol, genera, splitting fields.
@article{CHEB_2019_20_2_a17,
     author = {D. Malinin},
     title = {On some characters of group representations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {234--243},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a17/}
}
TY  - JOUR
AU  - D. Malinin
TI  - On some characters of group representations
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 234
EP  - 243
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a17/
LA  - en
ID  - CHEB_2019_20_2_a17
ER  - 
%0 Journal Article
%A D. Malinin
%T On some characters of group representations
%J Čebyševskij sbornik
%D 2019
%P 234-243
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a17/
%G en
%F CHEB_2019_20_2_a17
D. Malinin. On some characters of group representations. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 234-243. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a17/

[1] Mikhail Borovoi, Yves Cornulier, “Conjugate complex homogeneous spaces with non-isomorphic fundamental groups”, C.R. Acad. Sci. Paris, Ser. I, 353 (2015), 1001–1005 | MR | Zbl

[2] G. Cliff, J. Ritter, A. Weiss, “Group representations and integrality”, J. Reine Angew. Math., 426 (1992), 193–202 | MR | Zbl

[3] Henri Cohen, Number Theory, v. I, Graduate Texts in Mathematics, 239, Tools and Diophantine Equations, Springer, 2007 | MR | Zbl

[4] Ch. Curtis and I. Reiner, Representaion theory of finite groups and associative algebras, 1962 | MR

[5] Max Deuring, Algebren, Springer, 1968 | MR

[6] D. K. Faddeev, “An introduction to the multiplicative theory of modules of integral representations”, Trudy Mat. Inst. Steklov, 80, 1965, 145–182 (Russian) | MR | Zbl

[7] D. K. Faddeev, “On generalized integral representations over Dedekind rings”, J. Math. Sci. (New York), 89:2 (1998), 1154–1158 | MR

[8] B. H. Gross, “Group representations and lattices”, J. Amer. Math. Soc., 3 (1990), 929–960 | MR | Zbl

[9] B. H. Gross, “Groups over Z”, Invent. Math., 124 (1996), 263–279 | MR | Zbl

[10] H. Helling, “Lattices with non-integral character”, Groups: Topological, Combinatorial and Arithmetic Aspects, London Mathematical Society Lecture Note Series, 311, Cambridge University Press, 2004, 306–317 | MR | Zbl

[11] H. Hasse, Number Theory, Akademie-Verlag, Berlin, 1979 | MR | Zbl

[12] H. Hasse, “Zur Geschlechtertheorie in quadratischen Zahlkörpern”, J. Math. Soc. Japan, 3 (1951), 45–51 | MR | Zbl

[13] H. Hasse, “A supplement to Leopoldt's theory of genera in abelian number fields”, J. Number Theory, 1 (1969), 4–7 | MR | Zbl

[14] E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Leipzig, 1923 | MR | Zbl

[15] H. Helling, The trace field of a series of hyperbolic manifolds, Preprint 99-072, SFB 343, Bielefeld, 1999, 33 pp.

[16] D. Hilbert, The theory of algebraic number fields/David Hilbert, Transl. from the German by lain T. Adamson. With an introd. by Franz Lemmermeyer and Norbert Schappacher, Springer-Verlag, Berlin–Heidelberg, 1998 | MR

[17] H. M. Hilden, M. T. Lozano, J. A. Montesinos-Amilibia, “Characterization of Arithmetic Subgroups of $SL_2( \bf R)$ and $SL_2( \bf C)$”, Math. Nachr., 159 (1992), 245–270 | MR | Zbl

[18] I. M. Isaacs, Character Theory of finite groups, Academic Press, 1976 | MR | Zbl

[19] V. V. Ishkhanov, B. B. Lurje, D. K. Faddeev, The Embedding Problem in Galois Theory, v. 7, Transl. Math. Monographs, 165, AMS, 1997 | MR | Zbl

[20] Dmitry Malinin, Freddy Van Oystaeyen, “Realizability of two-dimensional linear groups over rings of integers of algebraic number fields”, Algebras and Representation Theory, 14:2 (2011), 201–211 | MR | Zbl

[21] St.-Petersburg Math. J., 12:3 (2001), 423–449 | MR | MR

[22] Dmitry Malinin, “On the integral and globally irreducible representations of finite groups”, Journal of Algebra and Its Applications, 17:3 (2018) | MR

[23] Dmitry Malinin, “One construction of integral representations of p-groups and some applications”, Chebyshevskii Sbornik, 16:3 (2015), 322–338 | MR

[24] Travis Morrison, “Diophantine definability of non-norms of cyclic extensions of global fields”, Trans. Amer. Math. Soc., 2019 | DOI | MR

[25] Freddy Van Oystaeyen, A. E. Zalesskiĭ, “Finite groups over arithmetic rings and globally irreducible representations”, J. Algebra, 215 (1999), 418–436 | MR

[26] W. Plesken, “On absolutely irreducible representations of orders”, Number theory and algebra, ed. Hans Zassenhaus, Academic Press, New York, 1977, 241–262 | MR

[27] U. Rehmann, E. Vinberg, “On a phenomenon discovered by Heinz Helling”, Transform. Groups, 22:1 (2017), 259–265 (English) | MR | Zbl

[28] J. P. Serre, “Three letters to Walter Feit on group representations and quaternions”, J. Algebra, 319:2 (2008), 549–557 | MR | Zbl

[29] E. B. Vinberg, “The smallest field of definition of a subgroup of the group $PSL_2$”, Russian Acad. Sci. Sb. Math., 80:1 (1995), 179–190 | MR