Generalized Kenmotsu manifold constancy of type
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 7-21

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we consider generalized Kenmotsu manifolds, we introduce: the fourth and the fifth fundamental identities of generalized Kenmotsu manifolds; the first and the second structural tensors of generalized Kenmotsu manifolds (and we prove their properties); the concept of adjoint Q-algebra for generalized Kenmotsu manifolds. We prove that generalized Kenmotsu manifolds and the II kind special generalized Kenmotsu manifolds have anticommutative adjoint Q-algebra. And the Kenmotsu manifolds and the I kind special generalized Kenmotsu manifolds have Abelian adjoint Q-algebra. The type constancy contact analog is introduced and the constant-type generalized Kenmotsu manifolds are thoroughly examined. We have identified the type point constancy conditions of the generalized Kenmotsu manifolds in the adjoint G-structure space. We prove that the zero constant type GK-manifold class coincides with the Kenmotsu manifold class and the non-zero constant type GK-manifold class can be concircularly transformed into the almost contact metric manifolds locally equivalent to the product of the six dimensional NK-eigenmanifold and the real straight line.
Keywords: Kenmotsu manifolds, generalized Kenmotsu manifolds, the I kind special generalized Kenmotsu manifolds, the II kind special generalized Kenmotsu manifolds, constant type GK-manifolds, most precise cosymplectic manifold.
@article{CHEB_2019_20_2_a0,
     author = {Ahmad Abu-Saleem and A. R. Rustanov and T. L. Melekhina},
     title = {Generalized {Kenmotsu} manifold constancy of type},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {7--21},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a0/}
}
TY  - JOUR
AU  - Ahmad Abu-Saleem
AU  - A. R. Rustanov
AU  - T. L. Melekhina
TI  - Generalized Kenmotsu manifold constancy of type
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 7
EP  - 21
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a0/
LA  - en
ID  - CHEB_2019_20_2_a0
ER  - 
%0 Journal Article
%A Ahmad Abu-Saleem
%A A. R. Rustanov
%A T. L. Melekhina
%T Generalized Kenmotsu manifold constancy of type
%J Čebyševskij sbornik
%D 2019
%P 7-21
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a0/
%G en
%F CHEB_2019_20_2_a0
Ahmad Abu-Saleem; A. R. Rustanov; T. L. Melekhina. Generalized Kenmotsu manifold constancy of type. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 7-21. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a0/