Generalized Kenmotsu manifold constancy of type
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 7-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we consider generalized Kenmotsu manifolds, we introduce: the fourth and the fifth fundamental identities of generalized Kenmotsu manifolds; the first and the second structural tensors of generalized Kenmotsu manifolds (and we prove their properties); the concept of adjoint Q-algebra for generalized Kenmotsu manifolds. We prove that generalized Kenmotsu manifolds and the II kind special generalized Kenmotsu manifolds have anticommutative adjoint Q-algebra. And the Kenmotsu manifolds and the I kind special generalized Kenmotsu manifolds have Abelian adjoint Q-algebra. The type constancy contact analog is introduced and the constant-type generalized Kenmotsu manifolds are thoroughly examined. We have identified the type point constancy conditions of the generalized Kenmotsu manifolds in the adjoint G-structure space. We prove that the zero constant type GK-manifold class coincides with the Kenmotsu manifold class and the non-zero constant type GK-manifold class can be concircularly transformed into the almost contact metric manifolds locally equivalent to the product of the six dimensional NK-eigenmanifold and the real straight line.
Keywords: Kenmotsu manifolds, generalized Kenmotsu manifolds, the I kind special generalized Kenmotsu manifolds, the II kind special generalized Kenmotsu manifolds, constant type GK-manifolds, most precise cosymplectic manifold.
@article{CHEB_2019_20_2_a0,
     author = {Ahmad Abu-Saleem and A. R. Rustanov and T. L. Melekhina},
     title = {Generalized {Kenmotsu} manifold constancy of type},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {7--21},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a0/}
}
TY  - JOUR
AU  - Ahmad Abu-Saleem
AU  - A. R. Rustanov
AU  - T. L. Melekhina
TI  - Generalized Kenmotsu manifold constancy of type
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 7
EP  - 21
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a0/
LA  - en
ID  - CHEB_2019_20_2_a0
ER  - 
%0 Journal Article
%A Ahmad Abu-Saleem
%A A. R. Rustanov
%A T. L. Melekhina
%T Generalized Kenmotsu manifold constancy of type
%J Čebyševskij sbornik
%D 2019
%P 7-21
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a0/
%G en
%F CHEB_2019_20_2_a0
Ahmad Abu-Saleem; A. R. Rustanov; T. L. Melekhina. Generalized Kenmotsu manifold constancy of type. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 7-21. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a0/

[1] Kirichenko V. F., “Almost Hermitian manifolds of the constant type”, Report ASUSSR, 256:16 (1981), 1293–1297 | MR

[2] A. Gray, “Curvature identities for Hermitian and almost Hermitian manifolds”, Tôhoku Math. J., 28 (1976), 601–612 | MR | Zbl

[3] Kirichenko V. F., “Constant type K-spaces”, Sib. Math. J., 17:12 (1976), 282–289 | MR | Zbl

[4] S. V. Umnova, “On conformal invariants of Kenmotsu manifolds”, Webs and Quasigroups, Tver State Univ., 2002, 155–160 | MR | Zbl

[5] K. Kenmotsu, “A class of almost contact Riemannian manifolds”, Tôhoku Math. J., 24 (1972), 93–103 | MR | Zbl

[6] D. E. Blair, D. K. Showders, “Almost contact manifolds with Killing structure tensors”, J. Differential Geom., 9 (1974), 577–582 | MR | Zbl

[7] Kirichenko V. F., Differential geometric structures on manifolds, Petchatny Dom, Odessa, 2013, 458 pp.

[8] Kirichenko V. F., Rustanov A. R., “Quasi-Sasakian manifolds differential”, Mathematical collection, 193(18) (2002), 71–100 | Zbl

[9] Abu-Saleem Ahmad, “Some aspects geometry of generalized manifolds Kenmotsu Rustanov”, Far East Journal of Mathematical Sciences (FJMS), 103:9 (2018), 1407–1432

[10] Abu-Saleem A., Rustanov A. R., Kharitonova S. V., “Generalized Kenmotsu manifold integrability properties”, Vladikavkasian Mathematical Journal, 20:3 (2018), 4–20 | DOI | MR

[11] V. F. Kirichenko, “Generalized quasi-Kaehlerian manifolds and axioms of CR-submanifolds in generalized Hermitian geometry”, Geom. Dedicata, 51 (1994), 75–104 | MR | Zbl

[12] Arsenyeva O. E., Kirichenko V. F., “Q-algebras of the main types of almost Hermitian and almost contact metrical manifolds”, Proc. Intern. Geom. Center, 6:4 (2013), 34–43

[13] Kirichenko V. F., “Holomorphic plane axiom in generalized Hermitian geometry”, ASUSSR Reports, 260:4 (1981), 795–799 | MR | Zbl

[14] Kirichenko V. F., “K-algebras and K-spaces of the constant type with indefinite metrics”, Math. notes, 29:2 (1981), 265–278 | MR | Zbl

[15] Abu-Saleem Ahmad, A. R. Rustanov, “Curvature Identities Special Generalized Manifolds Kenmotsu Second Kind Rustanov”, Malaysian Journal of Mathematical Sciences, 9:12 (2015), 187–207 | MR