Classical radicals and the Martindale centroid of Artin and Noetherian Lie algebras
Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 313-353.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work relates to the study of the structure of Lie algebras. The structure of this work is as follows: – the first section describes the concepts of classical radicals of Lie algebras, the basic definitions and properties of radicals; – the second section is devoted to the weakly artinian Lie algebras. The main results are the proof of the local nilpotence property of the prime radical of the weakly artinian Lie algebra and the solution of the A.V. Mikhalev problem; – the third section deals with the application of the Martindale centroid to the study of the structure of Noetherian special Lie algebras. The main result is a solution to the problem of embedding Any Noetherian semiprime special Lie algebra into algebra of matrices over commutative ring which is the direct sum of fields; – in the fourth section, the properties of the prime radical of graded $\Omega$-groups are considered. The research results are reflected in the 10 publications of the author in the period from 2015 to 2018, which were completed during graduate studies at the guidance of doctor of physical-mathematical Sciences, Professor S. A. Pikhtil'kova (02.03.1953–24.12.2015) and candidate of physico-mathematical Sciences, associate Professor O. A. Pikhtilkova.
Keywords: radicals of Lie algebras, prime radical of Lie algebras, nilpotent radicals of Lie algebras, Jacobson radical, weakly Artinian Lie algebras, A.V. Mikhalev problem, Noetherian lie algebras, Martindale centroid of Lie algebras, M. V. Zaitsev problem, prime radical of graded $\Omega$-groups.
@article{CHEB_2019_20_1_a21,
     author = {A. N. Blagovisnaya},
     title = {Classical radicals and the {Martindale} centroid of {Artin} and {Noetherian} {Lie} algebras},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {313--353},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a21/}
}
TY  - JOUR
AU  - A. N. Blagovisnaya
TI  - Classical radicals and the Martindale centroid of Artin and Noetherian Lie algebras
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 313
EP  - 353
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a21/
LA  - ru
ID  - CHEB_2019_20_1_a21
ER  - 
%0 Journal Article
%A A. N. Blagovisnaya
%T Classical radicals and the Martindale centroid of Artin and Noetherian Lie algebras
%J Čebyševskij sbornik
%D 2019
%P 313-353
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a21/
%G ru
%F CHEB_2019_20_1_a21
A. N. Blagovisnaya. Classical radicals and the Martindale centroid of Artin and Noetherian Lie algebras. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 313-353. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a21/

[1] Andrunakievich V. A., Ryabukhin Y. M., Radicals of algebras and structure theory, Nauka, M., 1979, 495 pp. | MR

[2] Balaba I. N., Pikhtilkov S. A., “Prime radicals of special Lie superalgebras”, Fundam. Prikl. Mat., 9:1 (2003), 51–60 | DOI

[3] Bahturin Y. A., Identities in algebras Lie, Science, M., 1985, 448 pp. | MR

[4] Beidar K. I., Pikhtilkov S. A., “On the prime radical of special Lie algebras”, UMN, 1994, no. 1, 233 | DOI | Zbl

[5] Beidar K. I., Pikhtilkov S. A., “The prime radical of the special Lie algebras”, Fundam. Prikl. Mat., 6:3 (2000), 643–648 | MR | Zbl

[6] Beidar K. I., Pikhtilkov S. A., “On PI-shells of the special Lie algebras”, Tezisy dokladov megdunarodnoi konferentsii “Universal'naya algebra i prilogeniya” (Volgograd, 1999), 18–19

[7] Bourbaki N., Lie groups and Lie algebras, v. I, Izdat. po treb., M., 2012, 496 pp.

[8] Gribov A. V., “The prime radical of alternative rings and loops”, Fundam. Prikl. Mat., 20:1 (2015), 145–166

[9] Gribov A. V., Mikhalev A. V., “Prime radical of loops and $\Omega$-loops. I”, Fundam. Prikl. Mat., 19:2 (2014), 25–42 | MR

[10] Jacobson N., Structure of rings, Izdat. inostrannoi literatury, M., 1961, 392 pp.

[11] Jacobson N., Lie Algebras, Mir, M., 1964, 356 pp.

[12] Zubrilin K. A., “On the greatest nilpotent ideal in algebras satisfying Capelli identities”, Mathematicheskii sb., 188:8 (1997), 93–102 | MR | Zbl

[13] Kaplansky I., Lie Algebras and Locally Compact Groups, Mir, M., 1974, 150 pp.

[14] Kurosh A. G., Lectures on General algebra, Science, M., 1973, 150 pp. | MR

[15] Kucherov A. A., “On almost locally solvable Lie algebras with zero Jacobson radical and locally nilpotent radical for Lie algebras”, Vestnik Orenburgskogo gos. univ., 2013, no. 1, 121–125

[16] Kucherov A. A., Pikhtilkov S. A., “On the homological description of a locally nilpotent radical for special Lie algebras”, Vestnik Orenburgskogo gos. univ., 2010, no. 9, 40–43

[17] Kucherov A. A., Pikhtilkov S. A., Pikhtilkova O. A., “On the homological description of the Jacobson radical for Lie algebras”, Chebyshevskii sb., 10:2 (2010), 71–76

[18] Lambec J., Rings and modules, Faktoriall Press, M., 2005, 150 pp.

[19] Latyshev V. N., “On Lie algebras with identical relations”, Sib. Mat. Zh., 4:4 (1963), 821–829 | Zbl

[20] Latyshev V. N., Mikhalev A. V., Pikhtilkov S. A., “On the sum of locally solvable ideals of Lie algebras”, Vestnik Moskovskogo universiteta. Seria 1. Mathematika. Mechanika, 2003, no. 3, 29–32 | Zbl

[21] Mescherina E. V., Pikhtilkova O. A., Pikhtilkov S. A., “On the A. V. Mikhalev's Problem for Lie Algebras"”, Isvestia Saratov. Universiteta: New ser. Ser. Math. Mech. Inform., 13:4 (2) (2013), 84–89

[22] Mescherina E. V., Pikhtilkova O. A., “The development of the concept of «artinian» for Lie algebras”, Chebyshevskii sb., 19:1 (2018), 167–175 | MR

[23] Mikhalev A.V., Skornjakov S. A., “Homological classification of rings”, Mathematical encyclopedia, v. 1, 1977–1985, 1052 | MR

[24] Mikhalev A. V., Shatalova M. A., “Prime radical of lattice-ordered rings”, Collection of works on algebra, Izdat. Mosk. univ., M., 1989, 178–184

[25] Mikhalev A. V., Shatalova, M. A., “Prime radical of lattice-ordered groups”, Vestnik Moskoivskogo univ., 1990, no. 2, 84–86

[26] Mikhalev A. V., Shatalova M. A., “Prime radical of $\Omega$-groups and $\Omega$-l-groups”, Fundam. Prikl. Mat., 4:4 (1998), 1405–1413 | MR | Zbl

[27] Mikhalev A. V., Balaba I. N., Pikhtilkov S. A., “Prime radicals of graded $\Omega$-groups”, Fundam. Prikl. Mat., 12:2 (2006,), 159–174 | DOI

[28] Mikhalev A. V., Shirshova E. E., “Prime radicals of AO-groups”, Fundam. Prikl. Mat., 12:8 (2006), 197–206 | DOI

[29] Mikhalev A. V., Shirshova E. E., “The prime radical of pl-groups”, Fundam. Prikl. Mat., 12:2 (2006), 193–199 | DOI | MR

[30] Parfenov V. A., “On weakly solvable radical of Lie algebras”, Sib. Mat. Zh., 12:1 (1971), 171–176 | MR | Zbl

[31] Pikhtilkov S. A., Pikhtilkova O. A., Gorelik A. A., Usova L. B., “On the homological description of the Jacobson radical for Lie algebras and the locally nilpotent radical for special Lie algebras”, Chebyshevskii sb., 18:2 (2017), 195–204 | DOI | MR | Zbl

[32] Pikhtilkov S. A., “On the use of the solvable radical in the theory of varieties of Lie algebras”, Algorithmic problems in group theory and semigroups, Izdat. Tul'sk. Gos. Ped. Univ., Tula, 1990, 60–65 | MR

[33] Pikhtilkov S. A., “Special Artinian Lie algebras”, Algorithmic problems in group theory and semigroups, Izdat. Tul'sk. Gos. Ped. Univ., Tula, 2001, 189–194

[34] Pikhtilkov S. A., Pikhtilkova O. A., “On some classical radicals for special Lie algebras”, Chebyshevskii sb., 9:1 (2008), 153–157 | MR | Zbl

[35] Pikhtilkov S. A., “On locally nilpotent radical of special Lie algebras”, Fundam. Prikl. Mat., 8:3 (2002), 769–782 | MR | Zbl

[36] Pikhtilkov S. A., Structural theory of special Lie algebras, Orenburg State Univesity, Orenburg, 2013, 171 pp.

[37] Pikhtilkova O. A., Pikhtilkov S. A., “Local solvability of the prime radical of a weakly artinian Lie algebra”, Sib. Mat. Zh., 57:3 (2016), 697–699 | DOI | MR | Zbl

[38] Pikhtilkova O. A., Pikhtilkov S. A., “On special Lie agebras having a faithful module with Krull dimension”, Izv. Math., 81:1 (2017), 93–100 | DOI | MR | Zbl

[39] Polyakov V. M., Pikhtilkov S. A., “On locally nilpotent artinian Lie algebras”, Chebyshevskii sb., 6:1 (2005), 163–169 | MR | Zbl

[40] Polyakov V. M., Pikhtilkov S. A., “About the analogue of the Amitsur-McCoy theorem for Lie algebras”, Vestnik Tul'sk. Gos. Ped. Univ., 2005, no. 2, 125–126

[41] Razmyslov Yu. P., “On the Jacobson radical in PI-algebras”, Algebra and Logic, 13:3 (1974), 337–360 | MR

[42] Razmyslov Yu., Identities of Algebras and Their Representations, Nauka, M., 1989, 432 pp. | MR

[43] Simonyan L. A., “On the Jacobson radical of the Lie algebra”, Latvian Math. Yearbook, 1993, no. 34, 230–234

[44] Herstein I., Non-commutative Rings, Mir, M., 1972, 190 pp.

[45] Shchukin K. K., “The RI*-solvable radical of groups”, Mat. Sb. (N.S.), 52(94):4 (1960), 1021–1031

[46] R. Amayo, I. Stewart, Infinite dimensional Lie algebras, Noordhoof, Leyden, 1974, 436 pp. | MR | Zbl

[47] Amitsur S. A., “Radicals of polynomials rings”, Canad. J. of Math., 8 (1956), 355–361 | MR | Zbl

[48] W. E. Baxter, W. S. Martindale, “Central closure of semiprime nonassociative rings”, Commun. of Algebra, 7:11 (1979), 1105–1132 | MR

[49] A. Buys, G. K. Gerber, “The prime radical for $\Omega$-groups”, Commun. in Algebra, 10 (1982), 1089–1099 | MR | Zbl

[50] Cohen M., Montgomery S., “Group-graded rings, smash products, and group action”, Trans. Amer. Math. Soc., 282:1 (1984), 237–258 | MR | Zbl

[51] Hartley B., “Locally nilpotent ideals of a Lie algebra”, Proc. Cambridge Phil. Soc., 63:2 (1967), 257–272 | MR | Zbl

[52] Jacobson N., PI-algebras, Springer-Verlag, Berlin–Heideilburg–New York, 1975, 120 pp. | MR | Zbl

[53] Kamiya N., “On the Jacobson radicals of infinite-dimensional Lie algebras”, Hiroshima Math. J., 9 (1979), 37–40 | MR | Zbl

[54] Kubo F., “Infinite-dimensional Lie algebras with null Jacobson radical”, Bull. Kyushu Inst. Technol. Math. Nat. Sci., 38 (1991), 23–30 | MR | Zbl

[55] McCoy N. H., “Prime ideals in general rings”, Amer. J. Math., 71 (1949), 823–833 | MR | Zbl

[56] Marshall E. I., “The Frattini subalgebras of a Lie algebra”, J. London Math. Soc., 42 (1967), 416–422 | MR | Zbl

[57] Pikhtilkov S. A., “Locally Nilpotent Ideals of Special Lie Algebras”, Comm. in Algebra, 29:10 (2001), 3781–3786 | MR | Zbl

[58] Pikhtilkov S., Polyakov V., “On a prime radical of algebras and superalgebras Lie”, Abstracts of Internetional conference on radicals dadicated to the memory of Prof. V. Andrunakievich (August 2003, Chisinau, Moldova), 2003, 33

[59] Togo S., “Radicals of infinite-dimensional Lie algebras”, Hiroshima Math. J., 2 (1972), 179–203 | MR | Zbl

[60] S. Togo, N. Kavamoto, “Ascendantly coalescent classes and radicals of Lie algebras”, Hiroshima Math. J., 2 (1972), 253–261 | MR | Zbl

[61] A. Blagovisnaya, S. Pikhtilkov, O. Pikhtilkova, “A prime radical of weakly artinian $\Omega$-groups with finite condition is locally nilpotent”, Journal of Generalized Lie Theory and Applications, 9:2 (2015) | DOI | MR | Zbl

[62] Pikhtilkov S. A., Pikhtilkova O. A., Blagovisnaya A. N., “On the embeddabillity of Noetherian semiprime special Lie algebra in $sl_{m} (F)\otimes _{F} C$”, Algebra i logika: teoriya i prilogeniya, Tezisy dokladov megdunarodnoi konferentsii, posvyachennoi 70-letiyu V. M. Levchuka (Krasnoyarsk, 2016), 110–111 | MR

[63] Pikhtilkov S. A., Blagovisnaya A. N., Pikhtilkova O. A., “On the local nilpotence of the prime radical of a weakly artinian Lie algebra”, Research in algebra, number theory, functional analysis and related topics, 2016, no. 8, 121–122

[64] Pikhtilkov S. A., Pikhtilkova O. A., Blagovisnaya A. N., “On the solvability of the primary radical of weakly artinian Lie algebras”, Materialy Vserossiiskoi konferencii “Universitet XXI veka: nauchnoe izmerenie” (Tula, 2016), 134–136

[65] Blagovisnaya A. N., Pikhtilkova O. A., Pikhtilkov S. A., “On the M. V. Zaicev problem for a Noetherian special Lie algebras”, Russian Math. (Iz. VUZ), 2017, no. 5, 26–31 | DOI | MR | Zbl

[66] Pikhtilkov S. A., Blagovisnaya A. N., Pavlenko A. N., “On various radicals of Lie algebras”, Materialy Vserossiiskoi nauchno-metodicheskoi konferencii “Universitetskii complex kak regionalny centr obrazovaniya, nauki i kultury” (Orenburg, 2017), 3174–3177

[67] Pikhtilkov S. A., Pikhtilkova O. A., Blagovisnaya A. N., “On the properties of the prime radical of a weakly artinian Lie algebra”, Chebyshevskii Sbornik, 18:1 (2017), 134–142 | DOI | MR | Zbl

[68] Pikhtilkov S. A., Pikhtilkova O. A., Blagovisnaya A. N., “Solvability of the prime radical of a weakly artinian Lie algebra”, Theses of reports of the 6th school conference “Lie algebras, algebraic groups and invariant theory” (Moscow, 2017), 65–67

[69] A. N. Blagovisnaya, O. A. Pikhtilkova, S. A. Pikhtilkov, “On the A. V. Mikhalev Problem for Weakly Artinian Lie Algebras”, Journal of Mathematical Sciences (United States), 233:5 (2018), 635–639 | DOI | MR | Zbl

[70] Blagovisnaya A. N., Gorelik A. A., Pikhtilkova O. A., “On examples of artinian Lie algebras”, Vestnik sovrevennych issledovanii, 2018, no. 12.14(27), 65–67