Some moments in the life of Antanas Laurin\v cikas: the search for universality
Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 6-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is dedicated to Lithuanian number theorist Professor Antanas Laurinčikas on the occasion of his 70th birthday. We sketch the main stages in the development of his scientific career. Although A. Laurinčikas started with probabilistic number theory, later on he became one of the leading world scientists in the theory of zeta-functions, especially concerning their universality. In the review we give a brief account of his pre-university life and the development of his career as a mathematician from the time he entered Vilnius University. We review some results of Antanas starting with early ones and then higlight the main results. At the end a list of scientific publications of A. Laurinčikas is presented.
Keywords: Antanas Laurinčikas, Vilnius University, zeta-functions, limit theorems, universality, moments of zeta-functions.
@article{CHEB_2019_20_1_a0,
     author = {A. Dubickas and R. Macaitien\.{e}},
     title = {Some moments in the life of {Antanas} {Laurin\v} cikas: the search for universality},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {6--45},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a0/}
}
TY  - JOUR
AU  - A. Dubickas
AU  - R. Macaitienė
TI  - Some moments in the life of Antanas Laurin\v cikas: the search for universality
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 6
EP  - 45
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a0/
LA  - en
ID  - CHEB_2019_20_1_a0
ER  - 
%0 Journal Article
%A A. Dubickas
%A R. Macaitienė
%T Some moments in the life of Antanas Laurin\v cikas: the search for universality
%J Čebyševskij sbornik
%D 2019
%P 6-45
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a0/
%G en
%F CHEB_2019_20_1_a0
A. Dubickas; R. Macaitienė. Some moments in the life of Antanas Laurin\v cikas: the search for universality. Čebyševskij sbornik, Tome 20 (2019) no. 1, pp. 6-45. http://geodesic.mathdoc.fr/item/CHEB_2019_20_1_a0/

[1] Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other alied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcutta, 1981

[2] Bohr H., Jessen B., “Über die Wertverteilung der Riemanschen Zetafunktion”, Acta Math., 54 (1930), 1–35 | MR | Zbl

[3] Borchsenius V., Jessen B., “Mean motions and values of the Riemann zeta-function”, Acta Math., 80 (1948), 97–166 | MR | Zbl

[4] Conrey J. B., Ghosh A., “On mean values of the zeta-function”, Mathematika, 31 (1984), 159–161 | MR | Zbl

[5] Delange H., “Sur la distribution des valeurs des functions multiplicative complexes”, C. R. Acad. Sci., série A, 276 (1973), 161–164 | MR | Zbl

[6] Garbaliauskienė V., Macaitienė R., Stančikienė R., Verikaitė V., Antanas Laurinčikas. The bibliographical index book, Šiauliai University, Šiauliai, 2008

[7] Garunkštis R., “The effective universality theorem for the Riemann zeta function”, Proc. of the Session in Analytic Number Theory and Diophantine Equations (Bonn, 2002), Bonner math. Schriften, 360, eds. D. R. Heath-Brown, B. Z. Moroz, 2003, 1–21 | MR

[8] Gonek S. M., Analytic properties of zeta and $L$-functions, Ph.D. Thesis, University of Michigan, 1979 | MR

[9] Harman G., Matsumoto K., “Discrepancy estimates for the value-distribution of the Riemann zeta-function. IV”, J. London Math. Soc., 2 (1994), 17–24 | MR

[10] Hölder O., “Über die Eigenschaft der Gammafunktion keiner algebraischen Differentialgleichung zu genügen”, Math. Ann., 28 (1887), 1–13

[11] Ivič A., Matsumoto K., “On the error term in the mean square formula for the Riemann zeta-function in the critical srip”, Monatshefte Math., 121 (1996), 213–229 | MR | Zbl

[12] Ivič A., Jutila M., Motohashi Y., “The Mellin transform of power moments of the zeta-function”, Acta Arith., 95 (2000), 305–342 | MR | Zbl

[13] Jessen B., Wintner A., “Distribution functions and the Riemann zeta-function”, Trans. Amer. Math. Soc., 38 (1935), 48–88 | MR

[14] Joyner D., Distribution theorems for $L$-functions, John Wiley, New York, 1986 | MR

[15] Klusch D., “Asymptotic equalities for the Lipschitz-Lerch zeta-function”, Arch. Math., 49:1 (1987), 38–43 | MR | Zbl

[16] Matsumoto K., “Discrepancy estimates for the value-distribution of the Riemann zeta-function I”, Acta Arith., 48 (1987), 167–190 | MR | Zbl

[17] Matsumoto K., “Discrepancy estimates for the value-distribution of the Riemann zeta-function III”, Acta Arith., 50 (1988), 315–337 | MR | Zbl

[18] Matsumoto K., “A survey on the theory of universality for zeta and $L$-functions”, Number Theory: Plowing and Starring Through High Wave Forms, Proc. 7th China Japan Sem. (Fukuoka 2013), Ser. on Number Theory and its Appl., 11, eds. M. Kaneko et al., World Scientific Publ. Co., Japan, 2015, 95–144 | MR | Zbl

[19] Matsumoto K., Meurman T., “The mean square of the Riemann zeta-function in the critical srip. II”, Acta Arith., 68 (1994), 369–382 | MR | Zbl

[20] Mishou H., “The joint value-distribution of the Riemann zeta function and Hurwitz zeta functions”, Lith. Math. J., 47 (2007), 32–47 | MR | Zbl

[21] Ostrowski A., “Über Dirichletsche Reihen und algebraische Differentialgleichungen”, Math. Z., 8 (1920), 241–298 | MR | Zbl

[22] Steuding J., Value-Distribution of $L$-Functions, Lecture Notes in Math., 1877, Springer, Berlin–Heidelberg, 2007 | MR | Zbl

[23] Steuding J., “The mathematical work of Antanas Laurinčikas — an interim report”, Šiauliai Math. Semin., 3:11 (2008), 7–51 | MR | Zbl

[24] Titchmarsh E. C., The Theory of the Riemann Zeta-Function, revised by D. R. Heath-Brown, 2nd Edition, Oxford University Press, Oxford, 1986 | MR | Zbl

[25] Voronin S. M., “Theorem on the “universality” of the Riemann zeta-function”, Math. USSR Izv., 9 (1975), 443–453 | MR | Zbl