Diffraction of sound on an elastic sphere with a nonhomogeneous coating and cavity in semi-space
Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 177-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem for diffraction a plane harmonic sound wave on an elastic sphere $T$ with cavity near ideal plane $\Pi$ is considered. The outer ball layer is nonhomogeneous. The solution is carried out by expanding the scope of the problem to the full space. In this case, an additional obstacle is introduced, which is a copy of $T$, which is located mirror with respect to the $\Pi$. A second incident plane wave is also added. This wave ensures the fulfillment of that condition at the points of the plane $\Pi$, which corresponds to the type of the half-space boundary in the initial formulation of the problem. Thus, the problem is transformed into the problem of scattering of two plane sound waves on two inhomogeneous spheres in unbounded space. The solution is based on the linear theory of elasticity and the model of propagation of small vibrations in an ideal fluid. In the outer part of the liquid, the solution is sought analytically in the form of an expansion in spherical harmonics and Bessel functions. In the spherical region, which includes two elastic balls and an adjacent layer of liquid, the finite element method (FEM) is used. The results of the calculation of the directivity patterns of the scattered sound field in the far zone are presented. These dependencies show the influence of the geometric and material parameters of the obstacle on the diffraction of sound.
Keywords: sound diffraction, half-space, inhomogeneous elastic ellipsoid, finite element method.
@article{CHEB_2018_19_4_a8,
     author = {S. A. Skobel'tsyn and I. S. Fedotov and A. S. Titova},
     title = {Diffraction of sound on an elastic sphere with a nonhomogeneous coating and cavity in semi-space},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {177--193},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a8/}
}
TY  - JOUR
AU  - S. A. Skobel'tsyn
AU  - I. S. Fedotov
AU  - A. S. Titova
TI  - Diffraction of sound on an elastic sphere with a nonhomogeneous coating and cavity in semi-space
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 177
EP  - 193
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a8/
LA  - ru
ID  - CHEB_2018_19_4_a8
ER  - 
%0 Journal Article
%A S. A. Skobel'tsyn
%A I. S. Fedotov
%A A. S. Titova
%T Diffraction of sound on an elastic sphere with a nonhomogeneous coating and cavity in semi-space
%J Čebyševskij sbornik
%D 2018
%P 177-193
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a8/
%G ru
%F CHEB_2018_19_4_a8
S. A. Skobel'tsyn; I. S. Fedotov; A. S. Titova. Diffraction of sound on an elastic sphere with a nonhomogeneous coating and cavity in semi-space. Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 177-193. http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a8/

[1] Gvishiani A. D., Zhizhin M. N., Mostinskii A. Z., Tumarkin A. G., “Classifikatciia sil`ny`kh dvizhenii` algoritmami raspoznavaniia”, Matematicheskie metody` obrabotki geofizicheskoi` informatcii, IFZ AN USSR, M., 1986, 136–156

[2] J. Bonnin, S. Bottard, A. Gvishiani, B. Mohammadioun, M. Zhizhin, “Classification of strong motion waveforms from different geological regions using syntactic pattern recognition scheme”, Cahiers du Centre Europeen de Geodynamique et de Seismologie, 6 (1992), 33–42

[3] A. Gvishiani, J. Dubois, Artificial intelligence and dynamic systems for geophysical applications, Springer-Verlag, Paris, 2002, 350 pp. | Zbl

[4] J. J. Faran, “Sound scattering by solid cylinders and spheres”, J. Acoust. Soc. Amer., 23:4 (1951), 405–420 | MR

[5] M. C. Junger, “Sound scattering by thin elastic shells”, J. Acoust. Soc. Amer., 24:4 (1952), 366–373 | MR

[6] T. Hasegawa, K. Yosioka, “Acoustic-radiation force on a solid elastic sphere”, J. Acoust. Soc. Amer, 46:5-2 (1969), 1139–1143 | Zbl

[7] Plahov D. D., Savolai`nen G. Y., “Difraktciia sfericheskoi` zvukovoi` volny` na uprugoi` sfericheskoi` obolochke”, Akust. Zhurnal, 21:5 (1975), 789–796

[8] Tolokonnikov L. A., Filatova U. M., “Difraktciia ploskoi` zvukovoi` volny` na uprugom share s proizvol`no raspolozhennoi` sfericheskoi` polost`iu”, Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, 2010, no. 1, 115–123

[9] Tolokonnikov L. A., Filatova U. M., “O difraktcii tcilindricheskoi` zvukovoi` volny` na uprugom share s proizvol`no raspolozhennoi` polost`iu”, Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, 2010, no. 2, 134–141

[10] Filatova U. M., “O rasseianii zvukovy`kh voln uprugim sharom s nekoncentricheskoi` polost`iu”, Materialy` mezhdunar. nauchn. konf. “Sovremenny`e problemy` matematiki, mehaniki, informatiki”, Tul. Gos. Univ., Tula, 2009, 295–296

[11] Filatova U. M., “Рассеяние сферической звуковой волны упругим шаром с полостью”, Vestnik Tul. Gos. Univ., Ser. Differentcial`ny`e uravneniia i pricladny`e zadachi, 2010, no. 1, 87–92

[12] I. Harari, T. J. R. Hughes, “Finite element method for the Helmholtz equation in an exterior domain: model problems”, Comp. Methods Appl. Mech. Eng., 87 (1991), 59–96 | MR | Zbl

[13] H. Gan, P. L. Levin, R. Ludwig, “Finite element formulation of acoustic scattering phenomena with absorbing boundary condition in the frequency domain”, J. Acoust. Soc. Amer., 94:3-1 (1993), 1651–1662 | MR

[14] Ihlenburg F., Finite element analysis of acoustic scattering, Springer Publishing Company Inc., New York, 2013, 226 pp. | MR

[15] Skobel'tsyn S. A., “Approach to solving problems on the scattering of elastic waves using FEM”, Tez. doc. Intern. scientific. Conf. “Modern problems of mathematics, mechanics, computer science”, Tul. Gos. Univ., Tula, 2004, 135–136

[16] Ivanov V. I., Skobel'tsyn S. A., “Modeling solutions to acoustics using FEM”, Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, 2008, no. 2, 132–145

[17] Ivanov, E. A., Diffraction of electromagnetic waves by two bodies, Nauka i tekhnika, Minsk, 1968, 584 pp.

[18] Kleshchev A. A., “Scattering of sound by spheroidal bodies located at the interface between media”, Akust. Zhurnal, 23:3 (1977), 404–410

[19] J. C. Gaunaurd, H. Huang, “Acoustic scattering by a spherical body near a plane boundary”, J. Acoust. Soc. Amer., 96:6 (1994), 2526–2536 | MR

[20] Tolokonnikov L. A., Logvinova A. L., “Diffraction of a plane sound wave on two non-uniform cylinders with rigid inserts”, Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, 2015, no. 1, 54–66

[21] Skobel'tsyn S. A., Tolokonnikov L. A., “Diffraction of a plane sound wave on an elastic spheroid with an inhomogeneous coating in the presence of an underlying surface”, Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, 2015, no. 2, 64–75

[22] Isakovich M. A., General acoustics, Nauka, M., 1973, 496 pp.

[23] Skudryzk E. F., The Foundations Acoustic, Springer-Verlag, New York, 1971, 542 pp. | MR

[24] Nowacki W., Teoria sprezystosci, Mir, M., 1975, 872 pp.