On classical number-theoretic nets
Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 118-176

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the hyperbolic Zeta function of nets with weights and the distribution of error values of approximate integration with modifications of nets. Considered: parallelepipedal nets $M(\vec a, p)$, consisting of points $$ M_k=\left(\left\{\dfrac{a_1k}{p}\right\}, \ldots, \left\{\dfrac{a_sk}{p}\right\}\right)\qquad(k=1,2, \ldots, p); $$ non-uniform nets $M (P)$, the coordinates of which are expressed via power functions modulo $P$: $$ M_k=\left(\left\{\dfrac{k}{P}\right\},\left\{\dfrac{k^2}{P}\right\} \ldots, \left\{\dfrac{k^s}{P}\right\}\right)\qquad(k=1,2, \ldots, P), $$ where $P=p$ or $P=p^2$ and $p$ — odd prime number; generalized uniform nets $M (\vec n)$ of $N=n_1\cdot\ldots\cdot n_s$ points of the form $$ M_{\vec k}=\left(\left\{\dfrac{k_1}{n_1}\right\},\left\{\dfrac{k_2}{n_2}\right\} \ldots, \left\{\dfrac{k_s}{n_s}\right\}\right)\quad(k_j=1,2, \ldots, n_j\, (j=1,\ldots,s)); $$ algebraic nets introduced by K. K. Frolov in 1976 and generalized parallelepipedal nets, the study of which began in 1984. In addition, the review of $p$-nets is considered: Hammersley, Halton, Faure, Sobol, and Smolyak nets. In conclusion, the current problems of applying the number-theoretic method in geophysics are considered, which require further study.
Keywords: hyperbolic Zeta function of nets with weights, classical number-theoretic nets.
@article{CHEB_2018_19_4_a7,
     author = {I. Yu. Rebrova and V. N. Chubarikov and N. N. Dobrovolsky and M. N. Dobrovolsky and N. M. Dobrovolsky},
     title = {On classical number-theoretic nets},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {118--176},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a7/}
}
TY  - JOUR
AU  - I. Yu. Rebrova
AU  - V. N. Chubarikov
AU  - N. N. Dobrovolsky
AU  - M. N. Dobrovolsky
AU  - N. M. Dobrovolsky
TI  - On classical number-theoretic nets
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 118
EP  - 176
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a7/
LA  - ru
ID  - CHEB_2018_19_4_a7
ER  - 
%0 Journal Article
%A I. Yu. Rebrova
%A V. N. Chubarikov
%A N. N. Dobrovolsky
%A M. N. Dobrovolsky
%A N. M. Dobrovolsky
%T On classical number-theoretic nets
%J Čebyševskij sbornik
%D 2018
%P 118-176
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a7/
%G ru
%F CHEB_2018_19_4_a7
I. Yu. Rebrova; V. N. Chubarikov; N. N. Dobrovolsky; M. N. Dobrovolsky; N. M. Dobrovolsky. On classical number-theoretic nets. Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 118-176. http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a7/