On classical number-theoretic nets
Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 118-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the hyperbolic Zeta function of nets with weights and the distribution of error values of approximate integration with modifications of nets. Considered: parallelepipedal nets $M(\vec a, p)$, consisting of points $$ M_k=\left(\left\{\dfrac{a_1k}{p}\right\}, \ldots, \left\{\dfrac{a_sk}{p}\right\}\right)\qquad(k=1,2, \ldots, p); $$ non-uniform nets $M (P)$, the coordinates of which are expressed via power functions modulo $P$: $$ M_k=\left(\left\{\dfrac{k}{P}\right\},\left\{\dfrac{k^2}{P}\right\} \ldots, \left\{\dfrac{k^s}{P}\right\}\right)\qquad(k=1,2, \ldots, P), $$ where $P=p$ or $P=p^2$ and $p$ — odd prime number; generalized uniform nets $M (\vec n)$ of $N=n_1\cdot\ldots\cdot n_s$ points of the form $$ M_{\vec k}=\left(\left\{\dfrac{k_1}{n_1}\right\},\left\{\dfrac{k_2}{n_2}\right\} \ldots, \left\{\dfrac{k_s}{n_s}\right\}\right)\quad(k_j=1,2, \ldots, n_j\, (j=1,\ldots,s)); $$ algebraic nets introduced by K. K. Frolov in 1976 and generalized parallelepipedal nets, the study of which began in 1984. In addition, the review of $p$-nets is considered: Hammersley, Halton, Faure, Sobol, and Smolyak nets. In conclusion, the current problems of applying the number-theoretic method in geophysics are considered, which require further study.
Keywords: hyperbolic Zeta function of nets with weights, classical number-theoretic nets.
@article{CHEB_2018_19_4_a7,
     author = {I. Yu. Rebrova and V. N. Chubarikov and N. N. Dobrovolsky and M. N. Dobrovolsky and N. M. Dobrovolsky},
     title = {On classical number-theoretic nets},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {118--176},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a7/}
}
TY  - JOUR
AU  - I. Yu. Rebrova
AU  - V. N. Chubarikov
AU  - N. N. Dobrovolsky
AU  - M. N. Dobrovolsky
AU  - N. M. Dobrovolsky
TI  - On classical number-theoretic nets
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 118
EP  - 176
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a7/
LA  - ru
ID  - CHEB_2018_19_4_a7
ER  - 
%0 Journal Article
%A I. Yu. Rebrova
%A V. N. Chubarikov
%A N. N. Dobrovolsky
%A M. N. Dobrovolsky
%A N. M. Dobrovolsky
%T On classical number-theoretic nets
%J Čebyševskij sbornik
%D 2018
%P 118-176
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a7/
%G ru
%F CHEB_2018_19_4_a7
I. Yu. Rebrova; V. N. Chubarikov; N. N. Dobrovolsky; M. N. Dobrovolsky; N. M. Dobrovolsky. On classical number-theoretic nets. Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 118-176. http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a7/

[1] Babenko K. I., Fundamentals of numerical analysis, Nauka, M., Russia, 1986 | MR

[2] Bakhvalov N. S., “On approximate computation of multiple integrals”, Vestnik Moskovskogo universiteta, 1959, no. 4, 3–18

[3] Bocharova L. P., “On the boundary of some classes of functions”, Naukoemkoe obrazovanie. Traditsii. Innovatsii. Perspektivy, Sbornik mezhvuzovskikh nauchnykh statej, 2006, 198–202

[4] Bykovskij V. A., Extremal cubature formulas for anisotropic classes, Preprint, Khabarovsk, Russia, 1995

[5] Hecke E., Lectures on algebraic number theory, Gostekhizdat, M.–L., 1940

[6] K. Gauss, The Works on the theory of numbers, Translations of B. B. Demyanov, under the General editorship of I. M. Vinogradov, comments B. N. Delaunay, Publishing house of the USSR, M., 1959, 978 pp.

[7] S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrov, I. N. Balaba, N. N. Dobrovol'skii, N. M. Dobrovol'skii, L. P. Dobrovol'skaya, A. V. Rodionov, O. A. Pikhtil'kova, “Number-theoretic method in approximate analysis”, Chebyshevskii Sbornik, 18:4 (2017), 6–85 | MR | Zbl

[8] Dobrovol'skaya L. P., Dobrovol'skii N. M., Simonov A. S., “On the error of approximate integration over modified grids”, Chebyshevskij sbornik, 9:1 (25) (2008), 185–223 | MR | Zbl

[9] Dobrovol'skii M. N., “Estimates of sums over a hyperbolic cross”, Izvestiya Tul'skogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Informatika, 9:1 (2003), 82–90 | MR

[10] Dobrovol'skii M. N., “The optimum coefficients of the combined meshes”, Chebyshevskij sbornik, 5:1 (9) (2004), 95–121 | MR | Zbl

[11] Dobrovol'skii M. N., Dobrovol'skii N. M., Kiseleva O. V., “On the product of generalized parallelepipedal grids of integer lattices”, Sovremennye problemy matematiki, mekhaniki, informatiki, Tezisy dokladov Vserossijskoj nauchnoj konferentsii (Tula, Russia, 2002), 22–23

[12] Dobrovol'skii M. N., Dobrovol'skii N. M., Kiseleva O. V., “On the product of generalized parallelepipedal grids of integer lattices”, Chebyshevskij sbornik, 3:2 (4) (2002), 43–59 | MR | Zbl

[13] Dobrovol'skii N. M., “An effective proof of Roth's quadratic deviation theorem”, Uspekhi matematicheskikh nauk, 39(123) (1984), 155–156 | Zbl

[14] Dobrovol'skii N. M., Estimates of variance of modified grids Hammersly Rota, Dep. v VINITI, No 1365-84

[15] Dobrovol'skii N. M., Evaluation of generalized variance parallelepipedal grids, Dep. v VINITI, No 6089-84

[16] Dobrovol'skii N. M., The hyperbolic Zeta function of lattices, Dep. v VINITI, No 6090-84

[17] Dobrovol'skii N. M., On quadrature formulas in classes $E_s^\alpha(c)$ and $H_s^\alpha(c)$, Dep. v VINITI, No 6091-84

[18] Dobrovol'skii N. M., Bocharova L. P., “Fifty years of the number-theoretic method in the approximate analysis”, Naukoemkoe obrazovanie. Traditsii. Innovatsii. Perspektivy, Sbornik mezhvuzovskikh nauchnykh statej, 2006, 189–198

[19] Dobrovol'skii N. M., Korobov N. M., “The optimal coefficients for mixed meshes”, Chebyshevskij sbornik, 2 (2001), 41–53 | Zbl

[20] Dobrovol'skii N. M., Manokhin E. V., “Banach spaces of periodic functions”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, 4:3 (1998), 56–67 | MR

[21] Dobrovol'skii N. M., Manokhin E. V., Rebrova I. Yu., Akkuratova S. V., “On some properties of normed spaces and algebras of nets”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, 5:1 (1999), 100–113 | MR

[22] N. M. Manokhin, E. V. Dobrovolsky, I. Yu. Rebrov, A. L. Rosena, “Of the continuity of the Zeta function of mesh with weights”, Izvestiya TulGU. Ser. Mathematics. Mechanics. Informatics, 7:1 (2001), 82–86 | MR

[23] N. N. Dobrovolsky, “PODPS TMK: Hyperbolic parameter of grids with weights”, Multiscale modeling of structures and nanotechnology, proceedings of the international scientific-practical conference (Tula, 3–7 October 2011), Publishing house of Tula state pedagogical University named after L. N. Tolstoy, Tula, 2011, 266–267

[24] O. V. Kiseleva, “The challenge Korobov for modified grids of Smolyak”, Chebyshevskii sbornik, 8:4 (24) (2007), 50–104 | Zbl

[25] Korobov N. M., “The evaluation of multiple integrals by method of optimal coefficients”, Vestnik Moskovskogo universiteta, 1959, no. 4, 19–25

[26] Korobov N. M., Number-theoretic methods in approximate analysis, Fizmatgiz, M., Russia, 1963

[27] Korobov N. M., “Quadrature formulas with combined grids”, Matematicheskie zametki, 55:2 (1994), 83–90 | MR | Zbl

[28] Korobov N. M., Number-theoretic methods in approximate analysis, 2nd ed., MTSNMO, M., Russia, 2004

[29] Lokutsievskij O. V., Gavrikov M. B., The beginning of numerical analysis, TOO “Yanus”, M., Russia, 1995 | MR

[30] Nikitin A. N., Rusakova E. I., Parkhomenko Eh. I., Ivankina T. I., Dobrovol'skij N. M., “On the reconstruction of the paleotectonic stress according to the piezoelectric texture of the rocks”, Izvestiya AN SSSR. Fizika Zemli, 1988, no. 9, 66–74

[31] Nikitin A. N., Rusakova E. I., Parkhomenko Eh. I., Ivankina T. I., Dobrovol'skij N. M., “Reconstruction of Paleotectonic Stresses Using Data on Piezoelectric Texstures of Rocks”, Izvestiya Earth Physics, 24:9 (1988), 728–734

[32] Smolyak S. A., “Interpolation and quadrature formulas on classes $W_s^\alpha$ and $E_s^\alpha$”, Doklady Akademii nauk SSSR, 131:5 (1960), 1028–1031

[33] Smolyak S. A., “Quadrature and interpolation formulas on tensor products of some classes of functions”, Doklady Akademii nauk SSSR, 148:5 (1963), 1042–1045 | Zbl

[34] Smolyak S. A., On optimal recovery of functions and functionals from them, Ph.D. Thesis, Moscow State University, M., USSR, 1966

[35] Sobol' I. M., Multidimensional quadrature formulas and Haar functions, Nauka, M., USSR, 1969

[36] Frolov K. K., “Upper bounds on the error of quadrature formulas on classes of functions”, Doklady Akademii nauk SSSR, 231:4 (1976), 818–821 | MR | Zbl

[37] K. Chandrasekharan, Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, M., 1974, 188 pp.

[38] W. W. L. Chen, “On irregularities of distribution”, Mathematika, 27:2 (1980), 153–170 | MR | Zbl

[39] W. W. L. Chen, “On irregularities of distribution II”, Quart. J. Math. Oxford (2), 34 (1983), 257–279 | MR | Zbl

[40] H. Davenport, “Note on irregularities of distribution”, Mathematika, 3 (1956), 131–135 | MR | Zbl

[41] H. Faure, “Discrepance de suites associees a un systeme denumeration (en dimention s)”, Acta Arith., 41 (1982), 337–351 | MR | Zbl

[42] J. H. Halton, “On the efficiency of certain quasirandom sequences of points in evaluating multidimensional integrals”, Numerische Math., 27:2 (1960), 84–90 | MR

[43] J. M. Hammersley, “Monte-Carlo methods for sobving multivariable problems”, Ann. New York Acad. Sci., 86 (1960), 844–874 | MR | Zbl

[44] K. F. Roth, “On irregularities of distribution”, Mathematika, 1 (1954), 73–79 | MR | Zbl

[45] K. F. Roth, “On irregularities of distribution IV”, Acta Arithm, 37 (1980), 65–75 | MR

[46] W. M. Schmidt, “Irregularities of distribution VII”, Acfa Arithm., 21 (1972), 45–50 | MR | Zbl

[47] W. M. Schmidt, “Irregularities of distribution X”, Number Theory and Algebra, ed. H. Zassenhaus, Academic Press, New York, 1977, 311–329 | MR

[48] H. Weyl, “Über die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77 (1916), 313–352 ; Veil G., Matematika. Teoreticheskaya fizika, Nauka, M., 1984 | MR | Zbl