On classical number-theoretic nets
Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 118-176
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper considers the hyperbolic Zeta function of nets with weights and the distribution of error values of approximate integration with modifications of nets.
Considered: parallelepipedal nets $M(\vec a, p)$,
consisting of points
$$
M_k=\left(\left\{\dfrac{a_1k}{p}\right\}, \ldots,
\left\{\dfrac{a_sk}{p}\right\}\right)\qquad(k=1,2, \ldots, p);
$$
non-uniform nets $M (P)$, the coordinates of which are expressed
via power functions modulo $P$:
$$
M_k=\left(\left\{\dfrac{k}{P}\right\},\left\{\dfrac{k^2}{P}\right\}
\ldots, \left\{\dfrac{k^s}{P}\right\}\right)\qquad(k=1,2, \ldots,
P),
$$
where $P=p$ or $P=p^2$ and $p$ — odd prime number;
generalized uniform nets $M (\vec n)$ of
$N=n_1\cdot\ldots\cdot n_s$ points of the form
$$
M_{\vec
k}=\left(\left\{\dfrac{k_1}{n_1}\right\},\left\{\dfrac{k_2}{n_2}\right\}
\ldots, \left\{\dfrac{k_s}{n_s}\right\}\right)\quad(k_j=1,2,
\ldots, n_j\, (j=1,\ldots,s));
$$ algebraic nets introduced by K. K. Frolov in 1976 and generalized parallelepipedal nets, the study of which began in 1984.
In addition, the review of $p$-nets is considered: Hammersley, Halton, Faure, Sobol, and Smolyak nets.
In conclusion, the current problems of applying the number-theoretic method in geophysics are considered, which require further study.
Keywords:
hyperbolic Zeta function of nets with weights, classical number-theoretic nets.
@article{CHEB_2018_19_4_a7,
author = {I. Yu. Rebrova and V. N. Chubarikov and N. N. Dobrovolsky and M. N. Dobrovolsky and N. M. Dobrovolsky},
title = {On classical number-theoretic nets},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {118--176},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a7/}
}
TY - JOUR AU - I. Yu. Rebrova AU - V. N. Chubarikov AU - N. N. Dobrovolsky AU - M. N. Dobrovolsky AU - N. M. Dobrovolsky TI - On classical number-theoretic nets JO - Čebyševskij sbornik PY - 2018 SP - 118 EP - 176 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a7/ LA - ru ID - CHEB_2018_19_4_a7 ER -
%0 Journal Article %A I. Yu. Rebrova %A V. N. Chubarikov %A N. N. Dobrovolsky %A M. N. Dobrovolsky %A N. M. Dobrovolsky %T On classical number-theoretic nets %J Čebyševskij sbornik %D 2018 %P 118-176 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a7/ %G ru %F CHEB_2018_19_4_a7
I. Yu. Rebrova; V. N. Chubarikov; N. N. Dobrovolsky; M. N. Dobrovolsky; N. M. Dobrovolsky. On classical number-theoretic nets. Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 118-176. http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a7/