Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_4_a6, author = {A. A. Lushnikov}, title = {Evolutionary equations and random graphs}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {103--117}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a6/} }
A. A. Lushnikov. Evolutionary equations and random graphs. Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 103-117. http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a6/
[1] Krapivsky P. L., Redner S., Ben-Naim E., A Kinetic View of Statistical Physics, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl
[2] Lushnikov A. A., “Time evolution of a random graphs”, J. Phys. A, 38 (2005), L777 | MR | Zbl
[3] Ben-Naim E., Krapivsky P. L., “Kinetic theory of random graphs: From paths to cycles”, Physical Review E, 71:2 (2005), 026129 | MR
[4] Ben-Naim E., Krapivsky P. L., “Unicyclic components in random graphs”, J. Phys., A 37 (2004), L189 | MR | Zbl
[5] Lushnikov A. A., “Exactly solvable model of a coalescing random graph”, Physical Review, 91 (2015), 02211 | MR
[6] Erdös R., Rényi A., “On the random graphs”, A Magiar Tydomanyos Akatemia Matematikai Kutato Intezetenek Kzlemenyei, 5 (1960), 17–61 | MR | Zbl
[7] Bollobas B., Random Graphs, 2nd ed., Cambridge University Press, 2001 | MR | Zbl
[8] Albert R., Barabási A.-L., “Statistical mechanics of complex networks”, Rev. Mod. Phys., 74 (2002), 47–97 | MR | Zbl
[9] Newman M. E. J., Networks: An Introduction, Oxford, 2010 | MR | Zbl
[10] Cohen R., Havlin S., Complex networks: structure, robustness and function, Cambridge university press, 2010 | Zbl
[11] Flory P. J., “Molecular Size Distribution in Three Dimensional Polymers I. Gelation”, J. Am. Chem.. Soc., 30, 3083; Stockmayer W. H., “Theory of Molecular Size Distribution and Gel Formation in Branched Polymers II. General Cross Linking”, Journal of Chemical Physics, 12:4 (1944), 125
[12] Stockmayer W. H., “Theory of molecular size distribution and gel formation in branched-chain polymers”, J. Chem. Phys., 11, 45 | MR
[13] Ziff R. M., Stell G., “Kinetics of polymer gelation”, J. Chem. Phys., 73 (1980), 3492–3499 | MR
[14] Marcus A. H., “Stochasic coalescence”, Technometrics, 10 (1968), 133–143 | MR
[15] Aldous D. J., “Deterministic and stochastic models for coalescence (aggregation, coagulation; review of the mean–field theory for probabilists)”, Bernoulli, 5 (1999), 3–122 | MR
[16] Leyvraz F., “Scaling theory and exactly solved models in the kinetics of irreversible aggregation”, Phys. Rep., 383 (2003), 95–212
[17] Lushnikov A. A., “Coagulation in finite systems”, Colloid Interface Sci., 65 (1978), 276–285
[18] Lushnikov A. A., “From sol to gel exactly”, Phys. Rev. Lett., 93 (2004), 198302
[19] Lushnikov A. A., “Sol-gel transition in coagulating systems”, Physica D, 222 (2006), 37 | MR | Zbl
[20] Knuth D. E., “Linear probing and graphs”, Algorithmica, 22 (1998), 561–568 | MR | Zbl
[21] Kreweras G., “Une famille de polynomes ayant pluseurs proprietes enumeratives”, Period. Math. Hungar., 11 (1980), 309–320 | MR | Zbl
[22] Riddell R. J., Ulenbeck G. E., “On the Theory of the Virial Development of the Equation of State of Monoatomic Gases”, J. Chem. Phys., 21 (1953), 2056–2064 | MR