Application of mathematical method of local variations to solve problems of plastic formification of metal, powder and nanocomposition materials
Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 43-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers an approach to solving plastic forming problems using a variational approach, which allows to determine the stress-strain state and the technological parameters associated with it, taking into account the combination of rheological properties of the materials being processed. On the basis of the first principle of energy in mechanics, which is built on the theorems on extremal properties, when the absolute minimum of the total power of the form-changing process corresponds to a real velocity field, energy functional has been composed. The energy functional is a power balance of internal and external forces. As the power of internal forces, we understand the cost of power of plastic deformation; power associated with the presence of velocities discontinuity surfaces in the volume of a deformable medium; power of friction forces, on the contact boundary with the tool; inertial component of power expended on the change in kinetic energy. Such a formulation makes it possible to investigate the processes of high-speed strain in the same way. This functional characterizes the state of the material under these processing conditions. To solve this functional, the method of local variations is applied, which refers to the direct numerical methods of the calculus of variations. An algorithm for calculating the power of plastic strains for the process of reverse extrusion of a glass from an isotropic, rigid-plastic material is given as an example.
Keywords: plastic form changing, local variation method, isotropic rigid-plastic medium, energy functional, process of reverse extrusion.
@article{CHEB_2018_19_4_a3,
     author = {G. M. Zhuravlev and A. E. Gvozdev and A. G. Kolmakov and A. N. Sergeev and D. V. Maliy},
     title = {Application of mathematical method of local variations to solve problems of plastic formification of metal, powder and nanocomposition materials},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {43--54},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a3/}
}
TY  - JOUR
AU  - G. M. Zhuravlev
AU  - A. E. Gvozdev
AU  - A. G. Kolmakov
AU  - A. N. Sergeev
AU  - D. V. Maliy
TI  - Application of mathematical method of local variations to solve problems of plastic formification of metal, powder and nanocomposition materials
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 43
EP  - 54
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a3/
LA  - ru
ID  - CHEB_2018_19_4_a3
ER  - 
%0 Journal Article
%A G. M. Zhuravlev
%A A. E. Gvozdev
%A A. G. Kolmakov
%A A. N. Sergeev
%A D. V. Maliy
%T Application of mathematical method of local variations to solve problems of plastic formification of metal, powder and nanocomposition materials
%J Čebyševskij sbornik
%D 2018
%P 43-54
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a3/
%G ru
%F CHEB_2018_19_4_a3
G. M. Zhuravlev; A. E. Gvozdev; A. G. Kolmakov; A. N. Sergeev; D. V. Maliy. Application of mathematical method of local variations to solve problems of plastic formification of metal, powder and nanocomposition materials. Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 43-54. http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a3/

[1] I. Ya. Tarnovsky, A. A. Pozdeev, O. A. Ganago, Theory of metal forming, Metallurgizdat, M., 1963, 672 pp.

[2] F. L. Chernousko, N. V. Banichuk, Variational problems of control mechanics, Nauka, M., 1973, 238 pp.

[3] G. M. Zhuravlev, A. E. Gvozdev, Processing of steels and alloys in the temperature range of phase transformations, monograph, Izd-vo TulGU, Tula, 2016, 320 pp.

[4] G. M. Zhuravlev, A. E. Gvozdev, Plastic dilatancy and deformation damage of metals and alloys, monograph, Izd-vo TulGU, Tula, 2014, 114 pp.

[5] A. E. Gvozdev, G. M. Zhuravlev, A. G. Kolmakov, “Formation of mechanical properties of carbon steels in the processes of drawing with thinning”, Tekhnologiya metallov, 2015, no. 11, 17–29

[6] G. M. Zhuravlev, A. E. Gvozdev, N. N. Sergeev, D. A. Provotorov, “Influence of deformation damage on the formation of mechanical properties of low-carbon steels”, Proizvodstvo prokata, 2015, no. 12, 9–13

[7] Tutyshkin N. D., Gvozdev A. E., Tregubov V. I., et al., Complex problems of plasticity theory, monograph, Izd-vo TulGU, Tula, 2015, 408 pp.

[8] A. E. Gvozdev, G. M. Zhuravlev, A. G. Kolmakov et al., “Calculation of deformation damage in the processes of reverse extrusion of metal products”, Tekhnologiya metallov, 2016, no. 1, 23–32

[9] A. D. Gvishiani, “Characters of representations of discrete series of groups in SL(2, K), where K is a nondiscrete unconnected locally compact field”, Functional Analysis and Its Applications, 7:1 (1973), 16–32 | MR

[10] A. D. Gvishiani, “Representations of an integer group SL(2) over a local non-Archimedean field in the function space on the Lobachevsky plane”, Vestnik MGU. Seriya 1. Matematikai mekhanika, 1977, no. 5, 22–29 | Zbl

[11] V. G. Getmanov, A. D. Gvishiani, R. V. Sidorov, “Application of the method of local approximations in the problem of reducing the errors of the vector-scalar magnetometer system for observations of the geomagnetic field with magnetic storms”, Globalnaya ehlektricheskaya cep: Materialy Vtoroj Vserossijskoj konferencii (Geofizicheskaya observatoriya «Borok»), Filigran, Borok, 2015, 130 pp.

[12] E. S. Makarov, A. E. Gvozdev, G. M. Zhuravlev, Theory of plasticity gelatinous environments, monograph, Izd-vo TulGU, Tula, 2015, 337 pp.

[13] E. S. Makarov, E. V. Elenkova, A. E. Gvozdev et al., Conjugate fields in elastic, plastic, free-flowing media, metallic hard-to-deform systems, Izd-vo TulGU, Tula, 2016, 526 pp.

[14] A. E. Gvozdev, A. D. Breki, Y. S. Dorokhin et al, Software package for calculating the power of forces, surface and friction interaction of ingot, powder and nanocomposite metal systems, Svidetel'stvo o gosudarstvennoj registracii programmy dlya EVM No 2018661010, 2018

[15] A. E. Gvozdev, A. G. Kolmakov, A. V. Malyarov et al, “Conditions for the manifestation of instability of cementite during thermal Cycling of carbon steels”, Materialovedenie, 2014, no. 10, 31–36

[16] A. E. Gvozdev, D. N. Bogolyubova, N. N. Sergeev, A. G. Kolmakov, D. A. Provotorov, I. V. Tikhonova, “Features of softening processes of aluminum, copper, and their alloys under hot deformation”, Inorganic Materials: Applied Research, 6:1 (2015), 32–40

[17] A. E. Gvozdev, A. G. Kolmakov, D. A. Provotorov et al, “The dependence of the parameters of superplastic difficult-to-deform steels R6M5 and 10p65-MP from the scheme of the stress state”, Deformaciya i razrushenie materialov, 2015, no. 11, 42–46

[18] E. M. Seledkin, A. E. Gvozdev, A. N. Sergeev et al., Calculation of materials processing by pressure by finite element method, Izd-vo TulGU, Tula, 113 pp.

[19] A. D. Breki, A. E. Gvozdev, A. G. Kolmakov, “Application of generalized pascal triangle for description of oscillations of friction forces”, Inorganic Materials: Applied Research, 8:4 (2017), 509–514 | DOI | MR

[20] A. E. Gvozdev, N. N. Sergeyev, I. V. Minayev, I. V. Tikhonova, A. N. Sergeyev, D. M. Khonelidze, D. V. Maliy, I. V. Golyshev, A. G. Kolmakov, D. A. Provotorov, “Temperature distribution and structure in the heat-affected zone for steel sheets after laser cutting”, Inorganic Materials: Applied Research, 8:1, 148–152 | DOI | MR

[21] A. D. Breki, A. E. Gvozdev, A. G. Kolmakov, N. E. Starikov, D. A. Provotorov, N. N. Sergeyev, D. M. Khonelidze, “On friction of metallic materials with consideration for superplasticity phenomenon”, Inorganic Materials: Applied Research, 8:1, 126–129 | DOI | MR

[22] E. S. Makarov, A. E. Gvozdev, G. M. Zhuravlev et al., “Application of the theory of plasticity of dilating media to the processes of compaction of powders of metal systems”, Chebyshevskij sbornik, 18:4(64) (2017), 268–284 | MR

[23] A. E. Gvozdev, G. M. Zhuravlev, S. V. Sapozhnikov, “Theoretical analysis of the process of compacting powder materials by pressing”, Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle, 2017, no. 4, 273–283 | MR

[24] G. M. Zhuravlev, A. E. Gvozdev, A. E. Cheglov et al., “The alternative definition of maximum plastic work hardening of the steels”, Stal', 2017, no. 6, 26–39

[25] M. H. Shorshorov, A. E. Gvozdev, A. N. Sergeyev et al., Modeling of processes of resource-saving processing of ingot, powder, nanostructured, composite materials, monograph, Izd-vo TulGU, Tula, 359 pp.

[26] A. D. Breki, S. E. Aleksandrov, K. S. Tyurikov, A. G. Kolmakov, A. E. Gvozdev, A. A. Kalinin, “Antifriction Properties of Plasma-Chemical Coatings Based on SiO${}_{2}$ with MoS${}_{2}$ Nanoparticles under Conditions of Spinning Friction on ShKh${}_{15}$ Steel”, Inorganic Materials: Applied Research, 9:4, 714–718 | DOI | MR

[27] M. H. Shorshorov, A. S. Basic, M. V. Kazakov et al., Superplasticity of steels, alloys and resource-saving technologies of metal forming processes, monograph, Izd-vo TulGU, Tula, 158 pp.