Local and spline approximations in digital processing of geomagnetic observations
Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 26-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Methods of local and spline approximations for digital processing of geomagnetic observa-tions are proposed for consideration. Algorithms for calculating piecewise-linear, sinusoidal and polynomial local approximation models have been developed. An algorithm for calculating the spline approximation model is developed. The generated mathematical apparatus is focused on solving problems of parameter estimation, filtering and spectral analysis for geomagnetic observations.
Keywords: local and spline approximations, models, geomagnetic observations, digital processing.
@article{CHEB_2018_19_4_a2,
     author = {V. G. Getmanov},
     title = {Local and spline approximations in digital processing of geomagnetic observations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {26--42},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a2/}
}
TY  - JOUR
AU  - V. G. Getmanov
TI  - Local and spline approximations in digital processing of geomagnetic observations
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 26
EP  - 42
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a2/
LA  - ru
ID  - CHEB_2018_19_4_a2
ER  - 
%0 Journal Article
%A V. G. Getmanov
%T Local and spline approximations in digital processing of geomagnetic observations
%J Čebyševskij sbornik
%D 2018
%P 26-42
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a2/
%G ru
%F CHEB_2018_19_4_a2
V. G. Getmanov. Local and spline approximations in digital processing of geomagnetic observations. Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 26-42. http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a2/

[1] A. D. Gvishiani, R. Yu. Luk'yanova, “Geoinformatika i nablyudeniya magnitnogo polya Zemli: rossijskij segment”, Fizika Zemli, 2015, no. 2, 3–20 | DOI

[2] V. G. Getmanov, Cifrovaya obrabotka nestacionarnyh kolebatel'nyh signalov na osnove lokal'nyh i splajnovyh modelej, Izd-vo NIYAU MIFI, M., 2011, 298 pp.

[3] V. G. Getmanov, R. V. Sidorov, R. A. Dabagyan, “Metod fil'tracii signalov s ispol'zovaniem lokal'nyh modelej i funkcij vzveshennogo usredneniya”, Izmeritel'naya tekhnika, 2015, no. 9, 52–57

[4] V. G. Getmanov, “O chastotnom podpoiske v zadache ocenivaniya parametrov kusochno- sinusoidal'nyh funkcij”, Avtometriya, 1992, no. 2, 93–98

[5] V. G. Getmanov, R. A. Dabagyan, R. V. Sidorov, “Issledovanie harakteristik geomagnitnyh pul'sacij metodom lokal'nyh approksimacij”, Geomagnetizm i aehronomiya, 56:2 (2016), 209–216

[6] V. G. Getmanov, “Ob algoritme poiska po chastote v zadache ocenivaniya parametrov modelej poligarmonicheskih signalov”, Avtometriya, 2009, no. 3, 83–89

[7] V. G. Getmanov, G. I. Borzunov, “Algoritm parallel'nyh vychislenij dlya zadachi spektral'no-vremennogo analiza na bazisnyh poligarmonicheskih funkciyah”, Informacionnye tekhnologii, 21:6 (2015), 456–463

[8] V. G. Getmanov, “Nelinejnaya fil'traciya nablyudenij sistemy vektornogo i skalyarnogo magnitometrov”, Izmeritel'naya tekhnika, 2013, no. 6, 51–55

[9] V. G. Getmanov, “Metody vychisleniya approksimacionnyh splajnovyh funkcij dlya zadach cifrovoj fil'tracii”, Teoriya i sistemy upravleniya, 2016, no. 5, 45–53 | MR

[10] V. G. Getmanov, “Algoritmy vychisleniya approksimacionnyh splajnovyh funkcij s uchyotom optimizacii raspolozheniya splajnovyh uzlov”, Avtometriya, 49:1 (2013), 26–41

[11] M. Mandea, M. Korte, Geomagnetic Observations and Models, Springer IAGA Special Sopron Book Series, 5, 1-st Edition, 2011, xv+343 pp.

[12] J. J. Love, “Magnetic monitoring of Earth and space”, Phys. Today, 61 (2008), 31–37

[13] A. Gvishiani, R. Lukianova, An. Soloviev et al., “Survey of Geomagnetic Observations Made in the Nothern Sector of Russia and New Methods for Analysing Them”, Surveys in Geophysics, 35:5 (2014), 1123–1154 | DOI

[14] A. Gvishiani, S. Bogoutdinov, A. A. Soloviev et al., “Automated recognition of spikes in 1 HZ data recordered at the Easter Island magnetic observatory”, Earth, Planets and Space, 64:9 (2012), 743–752 | DOI

[15] A. D. Gvishiani, S. M. Agayan, Sh. Bogoutdinov et al., “Recognition of disturbances with specified morphology in time series. Spikes on 1-s magnetograms”, Izvestiya. Physics of the Solid Earth, 48:5 (2012), 395–409 | DOI

[16] A. D. Gvishiani, E. Kihn, A. A. Soloviev et al., “Detection of hardware failures at INTERMASGNET observatories: application of artificial intelligence techniques to geomagnetic records study”, Russian Journal of Earth Sciences, 11:2 (2009), ES2006 | DOI

[17] A. D. Gvishiani, S. M. Agayan, J. Zlotnicki et al., “Mathematical methods of geoinformatics/ Fuzzy comparision and recognition of anomalies in time series”, Cybernetics and Systems Analysis, 44:3 (2008), 309–323 | DOI | MR | Zbl

[18] International Real-Time Magnetic Observatory Network, , 2018 http://www.intermagnet.org

[19] Bureau Central de Magnetisme Terrestre, , 2018 http://www.bcmt.fr

[20] V. G. Getmanov, S. E. Orlov, “A way to Use Local and Spline Models for Estimating the Parametrical Functions of a Nonstationary Waveform Signals”, Pattern Recognition and Image Analysis, 21:4 (2011), 677–680

[21] V. Katkovnik, K. Egiazarian, J. Astola, Local Approximation in Signal and Image Processing, SPIE Publications, 2006, 576 pp.

[22] G. A. F. Seber, A. J. Lee, Linear Regression Analysis, J. Wiley Sons Publications, 2003, 581 pp. | MR | Zbl