Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_4_a12, author = {V. N. Kuznetsov and O. A. Matveeva}, title = {Analogue of the {Duffin--Scheffer} theorem for one class of {Dirichlet} series with finite-valued coefficients}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {243--251}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a12/} }
TY - JOUR AU - V. N. Kuznetsov AU - O. A. Matveeva TI - Analogue of the Duffin--Scheffer theorem for one class of Dirichlet series with finite-valued coefficients JO - Čebyševskij sbornik PY - 2018 SP - 243 EP - 251 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a12/ LA - ru ID - CHEB_2018_19_4_a12 ER -
%0 Journal Article %A V. N. Kuznetsov %A O. A. Matveeva %T Analogue of the Duffin--Scheffer theorem for one class of Dirichlet series with finite-valued coefficients %J Čebyševskij sbornik %D 2018 %P 243-251 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a12/ %G ru %F CHEB_2018_19_4_a12
V. N. Kuznetsov; O. A. Matveeva. Analogue of the Duffin--Scheffer theorem for one class of Dirichlet series with finite-valued coefficients. Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 243-251. http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a12/
[1] L. Biberbakh, Analiticheskoe prodolzhenie, Nauka, M., 1970
[2] O. A. Matveeva, “Approksimatsionnye polinomy i povedenie L-funktsii Dirikhle v kriticheskoi polose”, Izvestiya Sarat. un-ta. Matematika, Mekhanika. Informatika, 2013, no. 4-2, 80–84
[3] O. A. Matveeva, Analiticheskie svoistva opredelennykh klassov ryadov Dirikhle i nekotorye zadachi teorii L-funktsii Dirikhle, Dissertatsiya na soiskanie uchebnoi stepeni k.f.-m.n. po spetsialnosti 01.01.06, Ulyanovsk, 2014
[4] V. N. Kuznetsov, O. A. Matveeva, “O granichnom povedenii odnogo klassa ryadov Dirikhle s multiplikativnymi koeffitsientami”, Chebyshevskii sbornik, 17:2 (2016), 142–149
[5] V. N. Kuznetsov, O. A. Matveeva, “Approksimatsionnye polinomy Dirikhle i nekotorye svoistva L-funktsii Dirikhle”, Chebyshevskii sbornik, 18:4 (2017), 196–204
[6] V. N. Kuznetsov, O. A. Matveeva, “O granichnom povedenii odnogo klassa ryadov Dirikhle s multiplikativnymi koeffitsientami”, Chebyshevskii sbornik, 17:3 (2016), 115–124
[7] V. N. Kuznetsov, O. A. Matveeva, “K zadache analiticheskogo prodolzheniya ryadov Dirikhle s konechnoznachnymi koeffitsientam kak tselykh funktsii na kompleksnuyu ploskost”, Chebyshevskii sbornik, 18:4 (2017), 205–2013
[8] V. N. Kuznetsov, O. A. Matveeva, “Granichnoe povedenie i zadacha analiticheskogo prodolzheniya odnogo klassa ryadov Dirikhle s multiplikativnymi koeffitsientami”, Chebyshevskii sbornik, 19:2 (2018)
[9] V. N. Kuznetsov, O. A. Matveeva, “K odnoi zadache Yu. V. Linnika”, Chebyshevskii sbornik, 19:3 (2018) | MR
[10] V. N. Kuznetsov, O. A. Matveeva, “K probleme obobschennykh kharakterov”, Chebyshevskii sbornik, 19:3 (2018) | MR
[11] A. Gurvits, R. Kurant, Teoriya funktsii, Nauka, M., 1968
[12] A. N. Markushevich, Teoriya analiticheskikh funktsii, v. 2, Nauka, M., 1967 | MR
[13] V. N. Kuznetsov, “Analog teoremy Sege dlya odnogo klassa ryadov Dirikhle”, Mat. zametki, 36:6 (1984), 805–813 | MR | Zbl
[14] N. G. Chudakov, Yu. V. Linnik, “Ob odnom klasse vpolne multiplikativnykh funktsii”, DAN SSSR, 74:2 (1950), 133–136
[15] N. G. Chudakov, “Obobschennye kharaktery”, Mezhdunar. kongress matematikov v Nitstse-1970, Doklady sovetskikh matematikov, Nauka, M., 1972, 335