Gravitation smoothing of time series (spectral properties)
Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 11-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article continues the cycle of works by authors on the development of mathematical aspects methods of artificial intelligence for the processing of observations conducted under the guidance of academician A.D. Gvishiani, which was began in 2000. It is devoted to a new universal method of smoothing, originally intended for the analysis of geophysical time series. Gravitational smoothing formed the basis for studying the acceleration of the secular course of the Earth's main magnetic field with using of the observational data of the INTERMAGNET network. But the properties of the smoothing operator have not been studied so far. This aticle is first step to this goal.
Keywords: gravitation smoothing, discrepancy of gravitational smoothing, proximity measures, smoothing operator, eigenvalues, spectral properties.
@article{CHEB_2018_19_4_a1,
     author = {S. M. Agayan and D. A. Kamaev and Sh. R. Bogoutdinov and A. S. Pavelev},
     title = {Gravitation smoothing of time series (spectral properties)},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {11--25},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a1/}
}
TY  - JOUR
AU  - S. M. Agayan
AU  - D. A. Kamaev
AU  - Sh. R. Bogoutdinov
AU  - A. S. Pavelev
TI  - Gravitation smoothing of time series (spectral properties)
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 11
EP  - 25
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a1/
LA  - ru
ID  - CHEB_2018_19_4_a1
ER  - 
%0 Journal Article
%A S. M. Agayan
%A D. A. Kamaev
%A Sh. R. Bogoutdinov
%A A. S. Pavelev
%T Gravitation smoothing of time series (spectral properties)
%J Čebyševskij sbornik
%D 2018
%P 11-25
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a1/
%G ru
%F CHEB_2018_19_4_a1
S. M. Agayan; D. A. Kamaev; Sh. R. Bogoutdinov; A. S. Pavelev. Gravitation smoothing of time series (spectral properties). Čebyševskij sbornik, Tome 19 (2018) no. 4, pp. 11-25. http://geodesic.mathdoc.fr/item/CHEB_2018_19_4_a1/

[1] A. A. Samarskii, Introduction to numerical methods, Nauka, M., 1982, 269 pp.

[2] A. A. Samarskii, A. V. Gulin, Numerical methods, Nauka, M., 1989, 432 pp.

[3] N. S. Bahvalov, N. P. Zhidkov, G. M. Kobelkov, Numerical methods, Publishing house “Laboratory of Basic Knowledge”, M., 2003, 632 pp. | MR

[4] Pshenichny, B. N., Yu. M. Danilin, Numerical Methods in Extremal Tasks, Nauka, M., 1975, 319 pp. | MR

[5] Daubechies I., Springer-Verlag, 1992, 369 pp.

[6] Mallat S., Academic Press, 1999, 620 pp.

[7] A. D. Gvishiani, M. Diament, V. O. Mikhailov, A. Galdeano, S. M. Agayan, Sh. R. Bogoutdinov, E. M. Graeva, “Artificial Intelligence Algorithms for Magnetic Anomaly Clustering”, Izvestiya, Physics of the Solid Earth, 38 (2002), 545–559 | MR

[8] V. Mikhailov, A. Galdeano, M. Diament, A. Gvishiani, S. Agayan, Sh. Bogoutdinov, E. Graeva, P. Sailhac, “A Application of artificial intelligence for Euler solutions clustering”, Geophysics, 68:1 (2003), 168–180

[9] Sh. R. Bogoutdinov, S. M. Agayan, A. D. Gvishiani, E. M. Graeva, M. V. Rodkin, J. Zlotnicki, J. L. Le Mouél, “Fuzzy logic algorithms in the analysis of electrotelluric data with reference to monitoring of volcanic activity”, Izvestiya, Physics of the Solid Earth, 43 (2007), 597–609

[10] A. D. Gvishiani, S. M. Agayan, Sh. R. Bogoutdinov, “Fuzzy recognition of anomalies in time series”, Doklady earth sciences, 421:1 (2008), 838–842 | DOI | Zbl

[11] Sh. R. Bogoutdinov, A. D. Gvishiani, S. M. Agayan, A. A. Solovyev, E. Kihn, “Recognition of disturbances with specified morphology in time series. Part 1: Spikes on magnetograms of the worldwide INTERMAGNET network”, Izvestiya, Physics of the Solid Earth, 46:11 (2010), 1004–1016

[12] A. A. Soloviev, S. M. Agayan, A. D. Gvishiani, Sh. R. Bogoutdinov, A. Chulliat, “Recognition of disturbances with specified morphology in time series: Part 2. Spikes on 1-s magnetograms”, Izvestiya, Physics of the Solid Earth, 48:5 (2012), 395–409 | DOI

[13] A. D. Gvishiani, S. M. Agayan, Sh. R. Bogoutdinov, A. I. Kagan, “Gravitational smoothing of time series”, Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, 17, no. 2, 2011, 62–70

[14] S. M. Agayan, Sh. R. Bogoutdinov, M. N. Dobrovolsky, A. I. Kagan, “Weighted gravitational time series smoothing”, Russ. J. Earth Sci., 14 (2014) | DOI

[15] A. Soloviev, A. Chulliat, Sh. Bogoutdinov, “Detection of secular acceleration pulses from magnetic observatory data”, Physics of the Earth and Planetary Interiors, 2017, 128–142 | DOI

[16] A. O. Gelfond, Finite difference calculus, GIFML, M., 1959, 400 pp. | MR

[17] J. H. Wilkinson, The Algebraic eigenvalue problem, Nauka, M., 1970, 564 pp.