On non-complete rational trigonometric sums
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 74-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give the version of Hua's method for the estimation of non-complete rational trigonometric sums. These estimates are non-trivial one for sums with lengths exceeding a square root of length the complete sum.
Keywords: the Hua's method of complete rational trigonometric sums estimate, non-complete rational trigonometric sums, polynomial congruencies, the chain of exponents and roots of congruencies.
@article{CHEB_2018_19_3_a7,
     author = {H. M. Saliba},
     title = {On non-complete rational trigonometric sums},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {74--79},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a7/}
}
TY  - JOUR
AU  - H. M. Saliba
TI  - On non-complete rational trigonometric sums
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 74
EP  - 79
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a7/
LA  - en
ID  - CHEB_2018_19_3_a7
ER  - 
%0 Journal Article
%A H. M. Saliba
%T On non-complete rational trigonometric sums
%J Čebyševskij sbornik
%D 2018
%P 74-79
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a7/
%G en
%F CHEB_2018_19_3_a7
H. M. Saliba. On non-complete rational trigonometric sums. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 74-79. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a7/

[1] Vinogradov I. M., Selected works, Springer Verlag, New York, 1985, 401 pp. | MR | Zbl

[2] Hua L. K., Selected Papers, Springer Verlag, New York, 1983, 888 pp. | MR | Zbl

[3] Arkhipov G. I., Selected Papers, Publ. House of Orjol State University, Orjol, 2013, 464 pp.

[4] G. I. Arkhipov, V. N. Chubarikov, A. A. Karatsuba, Trigonometric Sums in Number Theory and Analysis, De Gruyter expositions in mathematics, 39, Berlin–New York, 2004, 554 pp. | MR | Zbl

[5] A. A. Karatsuba, “Distribution of fractional parts of polynomials of special form”, Bull. Moscow University, Math., 1962, no. 3, 34–38 | MR | Zbl

[6] V. N. Chubarikov, “Linear arithmetic sums and Gaussian multiplication theorem”, Azerbaijan–Turkey–Ukrainian Int. Conf. “Mathematical Analysis, Differential Equations and their Applications”. Abstracts (September 08–13, 2015, Baku-Azerbaijan), 2015, 38

[7] V. N. Chubarikov, “Elementary of the complete rational arithmetical sums”, Chebyshevskii Sbornik, 16:3 (2015), 450–459 | MR | Zbl

[8] V. N. Chubarikov, “Arithmetic sums of polynomial values”, Dokl. RAN, 466:2 (2016), 152–153 | MR | Zbl

[9] V. N. Chubarikov, “Complete Rational Arithmetic Sums”, Bull. Math. of Moscow Univ. Ser. I, 2015, no. 1, 60–61 | MR

[10] V. N. Chubarikov, “On Complete Rational Arithmetic Sums of Polynomial Values”, Proc. of the Steklov Institute of Math., 299 (2017), 50–55 | MR | Zbl