On one property of the Maass and Shintani functionals
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 40-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Functionals of Maass and Shintani play a fundamental role in the study of classical problems of analytic number theory: the Linnik problem on the distribution of integer points on hyperboloids and the problem of the mean value of the function of the number of divisors of quadratic polynomials. In the paper it is proved that these functionals on spaces consisting of odd functions (odd with respect to the reflection operator, and for holomorphic forms of weight, which is not divisible by $ 4 $) are zero.
Keywords: automorphic forms, Maass and Shintani functionals, spectral theory of automorphic functions.
@article{CHEB_2018_19_3_a4,
     author = {V. A. Bykovsky},
     title = {On one property of the {Maass} and {Shintani} functionals},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {40--45},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a4/}
}
TY  - JOUR
AU  - V. A. Bykovsky
TI  - On one property of the Maass and Shintani functionals
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 40
EP  - 45
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a4/
LA  - ru
ID  - CHEB_2018_19_3_a4
ER  - 
%0 Journal Article
%A V. A. Bykovsky
%T On one property of the Maass and Shintani functionals
%J Čebyševskij sbornik
%D 2018
%P 40-45
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a4/
%G ru
%F CHEB_2018_19_3_a4
V. A. Bykovsky. On one property of the Maass and Shintani functionals. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 40-45. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a4/

[1] H. Maass, “Über die räumliche Verteilung der Punkte in Gittern mit indefiniter Metrik”, Math. Ann., 138 (1959), 287–315 | MR | Zbl

[2] T. Shintani, “On construction of holomorphic cusp forms of half–integral weight”, Nagoya Math. J., 58 (1975), 83–126 | MR | Zbl

[3] V. A. Bykovskij, “Spektral'nye razlozheniya nekotoryh avtomorfnyh funkcij i ih teoretiko-chislovye prilozheniya”, Zapiski nauchnyh seminarov LOMI, Nauka, L., 1984, 15–33 | MR | Zbl

[4] W. Duke, “Hyperbolic distribution problems and half-integral weight”, Invent. Math., 92 (1988), 73–90 | MR | Zbl

[5] S. Liu, R. Masri, “The average of the divisor function over values of quadratic polynomial”, Proc. Amer. Math. Soc., 143 (2015), 4143–4160 | MR | Zbl