On a theorem of Bredihin and Linnik
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 35-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a new proof of a theorem of B. M. Bredihin which was originally proved by extending Linnik’s solution, via his dispersion method, of a problem of Hardy and Littlewood.
Keywords: primes, dispersion, Bombieri-Vinogradov theorem.
@article{CHEB_2018_19_3_a3,
     author = {J. Friedlander and H. Iwaniec},
     title = {On a theorem of {Bredihin} and {Linnik}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {35--39},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a3/}
}
TY  - JOUR
AU  - J. Friedlander
AU  - H. Iwaniec
TI  - On a theorem of Bredihin and Linnik
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 35
EP  - 39
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a3/
LA  - en
ID  - CHEB_2018_19_3_a3
ER  - 
%0 Journal Article
%A J. Friedlander
%A H. Iwaniec
%T On a theorem of Bredihin and Linnik
%J Čebyševskij sbornik
%D 2018
%P 35-39
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a3/
%G en
%F CHEB_2018_19_3_a3
J. Friedlander; H. Iwaniec. On a theorem of Bredihin and Linnik. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 35-39. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a3/

[1] E. Bombieri, J. B. Friedlander, H. Iwaniec, “Primes in arithmetic progressions to large moduli III”, J. Amer. Math. Soc., 2 (1989), 215–224 | MR

[2] B. M. Bredihin, “Binary additive problems of indeterminate type. II. Analogue of the problem of Hardy and Littlewood”, Izv. Akad. Nauk SSSR Ser. Mat., 27 (1963), 577–612 | MR

[3] J. B. Friedlander, H. Iwaniec, Opera de Cribro, Amer. Math. Soc. Colloq. Pub., 57, AMS, Providence, 2010 | MR | Zbl

[4] H. Iwaniec, “Primes of the type $\phi (x,y)+A$ where $\phi$ is a quadratic form”, Acta Arith., 21 (1972), 203–234 | MR

[5] Yu. V. Linnik, The Dispersion Method in Binary Additive Problems, translated from the Russian by S. Schuur, AMS, Providence, 1963 | MR | Zbl