On a theorem of Bredihin and Linnik
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 35-39
Cet article a éte moissonné depuis la source Math-Net.Ru
We give a new proof of a theorem of B. M. Bredihin which was originally proved by extending Linnik’s solution, via his dispersion method, of a problem of Hardy and Littlewood.
Keywords:
Bombieri-Vinogradov theorem.
Mots-clés : primes, dispersion
Mots-clés : primes, dispersion
@article{CHEB_2018_19_3_a3,
author = {J. Friedlander and H. Iwaniec},
title = {On a theorem of {Bredihin} and {Linnik}},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {35--39},
year = {2018},
volume = {19},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a3/}
}
J. Friedlander; H. Iwaniec. On a theorem of Bredihin and Linnik. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 35-39. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a3/
[1] E. Bombieri, J. B. Friedlander, H. Iwaniec, “Primes in arithmetic progressions to large moduli III”, J. Amer. Math. Soc., 2 (1989), 215–224 | MR
[2] B. M. Bredihin, “Binary additive problems of indeterminate type. II. Analogue of the problem of Hardy and Littlewood”, Izv. Akad. Nauk SSSR Ser. Mat., 27 (1963), 577–612 | MR
[3] J. B. Friedlander, H. Iwaniec, Opera de Cribro, Amer. Math. Soc. Colloq. Pub., 57, AMS, Providence, 2010 | MR | Zbl
[4] H. Iwaniec, “Primes of the type $\phi (x,y)+A$ where $\phi$ is a quadratic form”, Acta Arith., 21 (1972), 203–234 | MR
[5] Yu. V. Linnik, The Dispersion Method in Binary Additive Problems, translated from the Russian by S. Schuur, AMS, Providence, 1963 | MR | Zbl