Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_3_a3, author = {J. Friedlander and H. Iwaniec}, title = {On a theorem of {Bredihin} and {Linnik}}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {35--39}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a3/} }
J. Friedlander; H. Iwaniec. On a theorem of Bredihin and Linnik. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 35-39. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a3/
[1] E. Bombieri, J. B. Friedlander, H. Iwaniec, “Primes in arithmetic progressions to large moduli III”, J. Amer. Math. Soc., 2 (1989), 215–224 | MR
[2] B. M. Bredihin, “Binary additive problems of indeterminate type. II. Analogue of the problem of Hardy and Littlewood”, Izv. Akad. Nauk SSSR Ser. Mat., 27 (1963), 577–612 | MR
[3] J. B. Friedlander, H. Iwaniec, Opera de Cribro, Amer. Math. Soc. Colloq. Pub., 57, AMS, Providence, 2010 | MR | Zbl
[4] H. Iwaniec, “Primes of the type $\phi (x,y)+A$ where $\phi$ is a quadratic form”, Acta Arith., 21 (1972), 203–234 | MR
[5] Yu. V. Linnik, The Dispersion Method in Binary Additive Problems, translated from the Russian by S. Schuur, AMS, Providence, 1963 | MR | Zbl