Approximation of quadratic algebraic lattices and nets by integer lattices and rational nets
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 241-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the approximation of quadratic algebraic lattices and grids by integer lattices and rational grids.A General formulation of the problem of approximation of algebraic lattices and corresponding meshes by integer lattices and rational meshes is given.In the case of a simple $p$ of the form $p=4k+3$ or $p=2$, we consider an integer lattice given $m$by a suitable fraction to the number $\sqrt{p}$. The corresponding algebraic lattice and the generalized parallelepipedal grid are written out explicitly.To determine the quality of the corresponding generalized parallelepipedal grid, a quality function is defined, which requires $O(N)$ arithmetic operations for its calculation, where $N$ — is the number of grid points. The Central result is an algorithm for computing a quality function for $O\left(\sqrt{N}\right)$ arithmetic operations.We hypothesize the existence of an algorithm that requires $O\left(\ln{N}\right)$ arithmetic operations. An approach for calculating sums with integral parts of linear functions is outlined.
Keywords: quadratic fields, approximation of algebraic grids, quality function, generalized parallelepipedal grid.
@article{CHEB_2018_19_3_a19,
     author = {A. V. Mikhlyaeva},
     title = {Approximation of quadratic algebraic lattices and nets by integer lattices and rational nets},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {241--256},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a19/}
}
TY  - JOUR
AU  - A. V. Mikhlyaeva
TI  - Approximation of quadratic algebraic lattices and nets by integer lattices and rational nets
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 241
EP  - 256
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a19/
LA  - ru
ID  - CHEB_2018_19_3_a19
ER  - 
%0 Journal Article
%A A. V. Mikhlyaeva
%T Approximation of quadratic algebraic lattices and nets by integer lattices and rational nets
%J Čebyševskij sbornik
%D 2018
%P 241-256
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a19/
%G ru
%F CHEB_2018_19_3_a19
A. V. Mikhlyaeva. Approximation of quadratic algebraic lattices and nets by integer lattices and rational nets. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 241-256. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a19/

[1] Vronskaya G. T., Quadratic deviation of flat grids, Abstract of Ph.D. dissertation: 01.06.06, M., 2005, 10 pp.

[2] Vronskaya G. T., Quadratic deviation of flat grids, Ph.D. Thesis, MSPU, M., 2005

[3] Vronskaya G. T., Dobrovol'skii N. M., “On two-dimensional Voronin grids”, Chebyshevskii sb., 5:1(9) (2004), 74–86 | MR | Zbl

[4] Vronskaya G. T., Dobrovol'skii N. M., Rodionova O. V., “Comparisons sums and works (abstracts)”, Materials of all-Russian conference “Modern problems of mathematics, mechanics and computer science”, TulSU, Tula, 2002

[5] Vronskaya G. T., Dobrovol'skii N. M., Rodionova O. V., “Comparisons, amounts and products on the reduced system of deductions”, News Of Tulgu. Ser. Mathematics. Mechanics. Informatics, 8:1 (2002), 10–28 | MR

[6] Vronskaya G. T., Dobrovol'skii N., Deviations of flat grids, monograph, ed. N. M. Dobrovol'skii, Tula, 2012

[7] Vronskaya G. T., Rodionova O. V., Quadratic deviation of flat grids, izd-vo TSPU them. L. N. Tolstoy, Tula, 2005

[8] Dobrovol'skaya V. N., “Amount incomplete or fractions”, Chebyshevskii sb., 5:2(10) (2004), 43–48 | MR

[9] Dobrovol'skaya V. N., “The formula of the Peak and partial sums of the fractional share”, Izv. Tul. st. un-ty. Ser. Mathematics. Mechanics. Informatics, 10:1 (2004), 5–11 | MR

[10] Dobrovol'skaya V. N., “The deviation of the flat parallelepipedal grids”, Chebyshevskii sb., 6:1(13) (2005), 87–97 | MR | Zbl

[11] Dobrovol'skaya V. N., “The basic method of fractional shares Vinogradova–Korobova and deviation of flat Bakhvalov grids”, Chebyshevskii sb., 6:2(14) (2005), 138–144 | MR | Zbl

[12] Dobrovol'skaya L. P., Dobrovol'skii M. N., Dobrovol'skii N. M., Dobrovol'skii N. N., Multidimensional number-theoretic grids and lattices and algorithms for finding the optimal coefficients, Izd-vo Tul. st. ped. un-ty them. L. N. Tolstoy, Tula, 2012, 283 pp.

[13] Dobrovol'skaya L. P., Dobrovol'skii M. N., Dobrovol'skii N. M., Dobrovol'skii N. N., “Hyperbolic Zeta functions of grids and lattices and calculation of optimal coefficients”, Chebyshevskii sb., 13:4(44) (2012), 4–107 | Zbl

[14] Dobrovol'skii N. M., The hyperbolic Zeta function of lattices, Dep. v VINITI, No 6090-84, 1984

[15] Dobrovol'skii N. M., Dobrovol'skii N. N., Soboleva V. N., Sobolev D. K., Yushina(Klimova) E. I., “Hyperbolic Zeta function of the lattice of a quadratic field”, Chebyshevskii sb., 16:4 (2015), 100–149 | MR | Zbl

[16] Dobrovol'skii N. M., Esayan A. R., Pikhtilkov S. A., Rodionova O. V., Ystyan A. E., “On one algorithm for finding optimal coefficients”, Izvestiya Tulgu. Ser. Mathematics. Mechanics. Informatics, 5:1 (1999), 51–71 | MR

[17] Dobrovol'skii N. M., Roshhenya A.L., “On continuity of the hyperbolic Zeta function of lattices”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, 2:1 (1996), 77–87 | MR

[18] Klimova E. I., Dobrovol'skii N. N., “Quadratic fields and quadrature formulas”, Proceedings of the XV International conference Algebra, number theory and discrete geometry: modern problems and applications, dedicated to the centenary of the doctor of physical and mathematical Sciences, Professor of Moscow state University named after M. V. Lomonosov Korobov Nikolai Mikhailovich, Publishing house. GOS. PED. UN-TA im. L. N. Tolstoy, Tula, 2018, 308–310

[19] Korobov N.M., Number-theoretic methods in approximate analysis, Fizmatgiz, M., 1963

[20] Korobov N. M., Numerical-theoretic methods in approximate analysis, MTSNMO, M., 2004, 288 pp.

[21] Rodionov A. V., “On rational approximations of algebraic grids”, Proceedings of the XV International conference Algebra, number theory and discrete geometry: modern problems and applications, dedicated to the centenary of the doctor of physical and mathematical Sciences, Professor of M. V. Lomonosov Moscow state University Nikolai Mikhailovich Korobov, Publishing house. GOS. PED. UN-TA im. L. N. Tolstoy, Tula, 2018, 321–310

[22] Rodionov A. V., Chuprin S. Yu., “On hyperbolic parameters of the lattice of linear comparison”, Izvestiya Tulgu. Natural science, 2014, no. 1-1, 50–62

[23] Rodionova O. V., “Recurrent formulas of the first order for power sums of fractional fractions”, Sat.: “All-Russian scientific conference "Modern problems of mathematics, mechanics, Informatics” (Tula, 2000), 2000, 50–51

[24] Rodionova O. V., Generalized parallelepipedal grids and their applications, Dis. ... kand. p. Mat. sciences, Moscow state pedagogical University, M., 2000

[25] Frolov K. K., “Upper estimates of the error of quadrature formulas on classes of functions”, DAN USSR, 231:4 (1976), 818–821 | MR | Zbl

[26] Frolov K. K., Quadrature formulas on classes of functions, Dis. ... kand. p. Mat. sciences, VTS an SSSR, M., 1979

[27] Sharugin I. F., “Lower estimates of the error of quadrature formulas on classes of functions”, Journal. compute. mate. and mate. physics, 7:4 (1983), 784–802