On a problem of Yu.~V.~Linnik
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 202-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the late 40-s of the last century Yu. V. Linnik posed the problem of analytic continuation in an integral way to the complex plane of Dirichlet series whose coefficients are determined by finite-valued numerical characteristics that are not equal to zero on almost all primes and have bounded summation functions. Such characters are called non-principal generalized characters. Many mathematicians dealt with Linnik's problem. In particular, this task was handled by N. G. Chudakov, who saw the way to solving it in proving his suggestion that the non-principal generalized character is the Dirichlet character. Linnik's problem and the hypothesis of N. G. Chudakov is widely known in number theory. It is called the problem of generalized characters. In this paper we solve the problem of Yu. V. Linnik, based on the results obtained earlier by the authors concerning the analytic continuation of Dirichlet series with multiplicative coefficients. Thus, in this paper a partial solution of the generalized character problem posed in the 1950-s Yu. V. Linnik and N. G. Chudakov.
Keywords: approximation Dirichlet polynomials, the Riemann-Schwarz symmetry principle, the problem of generalized characters.
@article{CHEB_2018_19_3_a15,
     author = {V. N. Kuznetsov and O. A. Matveeva},
     title = {On a problem of {Yu.~V.~Linnik}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {202--209},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a15/}
}
TY  - JOUR
AU  - V. N. Kuznetsov
AU  - O. A. Matveeva
TI  - On a problem of Yu.~V.~Linnik
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 202
EP  - 209
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a15/
LA  - ru
ID  - CHEB_2018_19_3_a15
ER  - 
%0 Journal Article
%A V. N. Kuznetsov
%A O. A. Matveeva
%T On a problem of Yu.~V.~Linnik
%J Čebyševskij sbornik
%D 2018
%P 202-209
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a15/
%G ru
%F CHEB_2018_19_3_a15
V. N. Kuznetsov; O. A. Matveeva. On a problem of Yu.~V.~Linnik. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 202-209. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a15/

[1] S. D. Lang, “Algebraic Number Theory”, New Jork, 1970, 384 pp. | MR

[2] Chudakov N. G., Linnik Yu. V., “Ob odnom klasse vpolne mul'tiplikativnyh funkcij”, DAN SSSR, 74:2 (1950), 133–136

[3] Chudakov N. G., Rodosskij K. A., “Ob obobshhennom haraktere”, DAN SSSR, 74:4 (1950), 1137–1138

[4] Chudakov N. G., “Ob odnom klasse mul'tiplikativnyh funkcij”, Uspehi mat. nauk, 8:3 (1953), 149–150 | MR | Zbl

[5] Chudakov N. G., “Obobshhennye haraktery”, Mezhdunar. kongress matimatikov v Nicce. Doklad sovetskih matematikov, Nauka, M., 1972, 335

[6] O. A. Matveeva, “On the zeros of Dirichlet polynomials that approximate Dirichlet L-functions in the critical band”, Chebyshevskij sbornik, 14:2 (2013), 117–121 | MR

[7] Matveeva O. A., “Approksimacionnye polinomy i povedenie L-funkcij Dirihle v kriticheskoj polose”, Izvestija Sarat. un-ta. Matematika, Mehanika. Informatika, 2013, no. 4-2, 80–84

[8] Korotkov A. E., Matveeva O. A., “Ob odnom chislennom algoritme opredelenija nulej celyh funkcij, opredeljaemyh rjadami Dirihle s periodicheskimi kojefficientami”, Nauchnye vedomosti BelGU, 2011, no. 24, 47–54

[9] Matveeva O. A., Analiticheskie svojstva opredeljonnyh klassov rjadov Dirihle i nekotorye zadachi teorii L-funkcij Dirihle, Dissertacija na soiskanie uchebnoj stepeni k.f.m.n. po special'nosti 01.01.06, Ul'janovsk, 2014

[10] Kuznetsov V. N., Matveeva O. A., “O granichnom povedenii odnogo klassa rjadov Dirihle”, Chebyshevskij sbornik, 17:2 (2016), 162–169 | MR | Zbl

[11] Kuznetsov V. N., Matveeva O. A., “O granichnom povedenii odnogo klassa rjadov Dirihle s mul'tiplikativnymi kojefficientami”, Chebyshevskij sbornik, 17:4 (2016), 115–124

[12] Kuznetsov V. N., Matveeva, O. A., “On the problem of analytical continuation of Dirichlet series with finite coefficients as entire functions onto the complex plane”, Chebyshevskij sbornik, 18:4 (2017), 285–295 | MR

[13] Kuznetsov V. N., Matveeva O. A., “Boundary behavior and the problen of analytic continuation of a certain class of Dirichlet series with multiplicative coefficients as an integral functions on the complex plane”, Chebyshevskij sbornik, 19:2 (2018), 124–137 | MR | Zbl

[14] Markushevich A. I., Theory of analitical functions, v. 2, Nauka, M., 1967, 624 pp. | MR

[15] A. Gurvic, R. Nurant, Teoriya funkcij, Nauka, M., 1968, 646 pp.