On two asymptotic formulas in the theory of hyperbolic Zeta function of lattices
Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 109-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers new variants of two asymptotic formulas from the theory of hyperbolic Zeta function of lattices. First, we obtain a new asymptotic formula for the hyperbolic Zeta function of an algebraic lattice obtained by stretching $t$ times over each coordinate of a lattice consisting of complete sets of algebraically conjugate algebraic integers running through a ring of algebraic integers of a purely real algebraic field of degree $s$ for any natural $s\ge2$. Second, we obtain a new asymptotic formula for the number of points of an arbitrary lattice in a hyperbolic cross. In the first case, it is shown that the main term of the asymptotic formula for the hyperbolic Zeta function of an algebraic lattice is expressed in terms of the lattice determinant, the field controller, and the values of the Dedekind Zeta function of the principal ideals and its derivatives up to the order of $s-1$. For the first time an explicit formula of the residual term is written out and its estimation is given. In the second case, the principal term of the asymptotic formula is expressed in terms of the volume of the hyperbolic cross and the lattice determinant. An explicit form of the residual term and its refined estimate are given. In conclusion, the essence of the method of parametrized sets used in the derivation of asymptotic formulas is described.
Keywords: algebraic lattice, hyperbolic Zeta function of algebraic lattice, Dedekind Zeta function of principal ideals, hyperbolic cross, lattice points in hyperbolic cross.
@article{CHEB_2018_19_3_a10,
     author = {N. N. Dobrovolsky},
     title = {On two asymptotic formulas in the theory of hyperbolic {Zeta} function of lattices},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {109--134},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a10/}
}
TY  - JOUR
AU  - N. N. Dobrovolsky
TI  - On two asymptotic formulas in the theory of hyperbolic Zeta function of lattices
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 109
EP  - 134
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a10/
LA  - ru
ID  - CHEB_2018_19_3_a10
ER  - 
%0 Journal Article
%A N. N. Dobrovolsky
%T On two asymptotic formulas in the theory of hyperbolic Zeta function of lattices
%J Čebyševskij sbornik
%D 2018
%P 109-134
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a10/
%G ru
%F CHEB_2018_19_3_a10
N. N. Dobrovolsky. On two asymptotic formulas in the theory of hyperbolic Zeta function of lattices. Čebyševskij sbornik, Tome 19 (2018) no. 3, pp. 109-134. http://geodesic.mathdoc.fr/item/CHEB_2018_19_3_a10/

[1] Bakhvalov N. S., “On approximate computation of multiple integrals”, Vestnik Moskovskogo universiteta, 1959, no. 4, 3–18

[2] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, M., 1985 | MR

[3] S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrova, I. N. Balaba, N. N. Dobrovolskii, N. M. Dobrovolskii, L. P. Dobrovolskaya, A. V. Rodionov, O. A. Pikhtilkova, “Teoretiko-chislovoi metod v priblizhennom analize”, Chebyshevskii sbornik, 18:4(64) (2017), 6–85 | MR | Zbl

[4] L. P. Dobrovolskaya, M. N. Dobrovolskii, N. M. Dobrovolskii, N. N. Dobrovolskii, Mnogomernye teoretiko-chislovye setki i reshetki i algoritmy poiska optimalnykh koeffitsientov, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2012, 283 pp.

[5] L. P. Dobrovol'skaja, M. N. Dobrovol'skij, N. M. Dobrovol'skij, N. N. Dobrovol'skij, “Giperbolicheskie dzeta-funkcii setok i reshjotok i vychislenie optimal'nyh kojefficientov”, Chebyshevskii Sbornik, 13:4 (44) (2012), 4–107 | Zbl

[6] L. P. Dobrovolskaya, N. M. Dobrovolskii, N. N. Dobrovolskii, N. K. Ogorodnichuk, E. D. Rebrov, I. Yu. Rebrova, “Nekotorye voprosy teoretiko-chislovogo metoda v priblizhennom analize”, Uchenye zapiski Orlovskogo gosudarstvennogo universiteta, 2012, no. 6-2, Trudy X mezhdunarodnoi konferentsii «Algebra i teoriya chisel: sovremennye problemy i prilozheniya», 90–98

[7] L. P. Dobrovolskaya, M. N. Dobrovolskii, N. M. Dobrovolskii, N. N. Dobrovolskii, I. Yu. Rebrova, “Nekotorye voprosy teoretiko-chislovogo metoda v priblizhennom analize”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:4(2) (2013), 47–52 | Zbl

[8] M. N. Dobrovolskii, “Ryady Dirikhle s periodicheskimi koeffitsientami i funktsionalnoe uravnenie dlya giperbolicheskoi dzeta-funktsii tselochislennykh reshetok”, Chebyshevskii sbornik, 3:2(4) (2006), 43–59

[9] M. N. Dobrovol'skij, “Funkcional'noe uravnenie dlja giperbolicheskoj dzeta-funkcii celochislennyh reshetok”, Doklady akademii nauk, 412:3 (2007), 302–304 | Zbl

[10] M. N. Dobrovolskii, “Funktsionalnoe uravnenie dlya giperbolicheskoi dzeta-funktsii tselochislennykh reshetok”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 2007, no. 3, 18–23 | Zbl

[11] N. M. Dobrovolskii, Giperbolicheskaya dzeta funktsiya reshetok, Dep. v VINITI 24.08.84, No 6090-84

[12] N. M. Dobrovolskii, O kvadraturnykh formulakh na klassakh $E_s^\alpha(c)$ i $H_s^\alpha(c)$, Dep. v VINITI 24.08.84, No 6091-84

[13] N. M. Dobrovolskii, Teoretiko-chislovye setki i ikh prilozheniya, Dis. ... kand. fiz. mat. nauk, Tula, 1984 | Zbl

[14] N. M. Dobrovolskii, Teoretiko-chislovye setki i ikh prilozheniya, Avtoref. dis. ... kand. fiz. mat. nauk, M., 1985

[15] N. M. Dobrovolskii, “Teoretiko-chislovye setki i ikh prilozheniya”, Teoriya chisel i ee prilozheniya, Tez. dokl. Vsesoyuz. konf. (Tbilisi, 1985), 67–70 | MR

[16] N. M. Dobrovolskii, Mnogomernye teoretiko-chislovye setki i reshetki i ikh prilozheniya, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2005

[17] N. M. Dobrovolskii, “O sovremennykh problemakh teorii giperbolicheskoi dzeta-funktsii reshetok”, Chebyshevskii sb., 16:1 (2015), 176–190 | MR | Zbl

[18] N. M. Dobrovolskii, V. S. Vankova, “O giperbolicheskoi dzeta-funktsii algebraicheskikh reshetok”, Teoriya chisel i ee prilozheniya, Tez. dokl. respublik. konf. (Tashkent, 1990), 22

[19] N. M. Dobrovolskii, V. S. Vankova, S. L. Kozlova, Giperbolicheskaya dzeta-funktsiya algebraicheskikh reshetok, Dep. v VINITI 12.04.90, No 2327-B90

[20] N. M. Dobrovolsky, N. N. Dobrovolsky, V. N. Soboleva, D. K. Sobolev, L. P. Dobrovol'skaya, O. E. Bocharova, “On hyperbolic Hurwitz zeta function”, Chebyshevskii Sbornik, 17:3 (2016), 72–105 | MR | Zbl

[21] N. M. Dobrovolskii, N. N. Dobrovolskii, V. N. Soboleva, D. K. Sobolev, E. I. Yushina, “Giperbolicheskaya dzeta-funktsiya reshetki kvadratichnogo polya”, Chebyshevskii sb., 16:4 (2015), 100–149 | MR | Zbl

[22] N. M. Dobrovolskii, I. Yu. Rebrova, A. L. Roschenya, “Nepreryvnost giperbolicheskoi dzeta-funktsii reshetok”, Mat. zametki, 63:4 (1998), 522–526 | MR

[23] N. M. Dobrovolskii, A. L. Roschenya, “O chisle tochek reshetki v giperbolicheskom kreste”, Algebraicheskie, veroyatnostnye, geometricheskie, kombinatornye i funktsionalnye metody v teorii chisel, Sb. tez. dokl. II Mezhdunar. konf. (Voronezh, 1995), 53 | MR

[24] N. M. Dobrovolskii, A. L. Roschenya, “Ob analiticheskom prodolzhenii giperbolicheskoi dzeta-funktsii ratsionalnykh reshetok”, Sovremennye problemy teorii chisel i ee prilozheniya, Sb. tez. dokl. III Mezhdunar. konf. (Tula, 1996), 49 | Zbl

[25] N. M. Dobrovolskii, A. L. Roschenya, “O nepreryvnosti giperbolicheskoi dzeta-funktsii reshetok”, Izv. Tul. gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 2:1 (1996), 77–87 | MR

[26] N. M. Dobrovolskii, A. L. Roschenya, “O chisle tochek reshetki v giperbolicheskom kreste”, Mat. zametki, 63:3 (1998), 363–369 | MR

[27] N. N. Dobrovolskii, “O chisle tselykh tochek v giperbolicheskom kreste pri znacheniyakh parametra $1\leqslant t 21$”, Izvestiya TulGU. Ser. Matematika. Mekhanika. Informatika, 9:1 (2003), 91–95 | MR

[28] N. M. Korobov, “O priblizhennom vychislenii kratnykh integralov”, DAN SSSR, 124:6 (1959), 1207–1210 | Zbl

[29] N. M. Korobov, “Vychislenie kratnykh integralov metodom optimalnykh koeffitsientov”, Vestn. Mosk. un-ta, 1959, no. 4, 19–25

[30] Н. М. Коробов, Теоретико-числовые методы в приближенном анализе, Физматгиз, М., 1963

[31] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, vtoroe izdanie, MTsNMO, M., 2004

[32] I. Yu. Rebrova, “Nepreryvnost giperbolicheskoi dzeta-funktsii reshetok”, Sovremennye problemy teorii chisel, Tez. dokl. III Mezhdunar. konf., Izd-vo TGPU, Tula, 1996, 119

[33] I. Yu. Rebrova, “Nepreryvnost obobschennoi giperbolicheskoi dzeta-funktsii reshetok i ee analiticheskoe prodolzhenie”, Izv. TulGU. Ser. Mekhanika. Matematika. Informatika. Tula, 4:3 (1998), 99–108 | MR

[34] I. Yu. Rebrova, N. M. Dobrovolskii, N. N. Dobrovolskii, I. N. Balaba, A. R. Esayan, Yu. A. Basalov, Teoretiko-chislovoi metod v priblizhennom analize i ego realizatsiya v POIVS «TMK», Monogr. V 2 ch., v. I, ed. N. M. Dobrovolskii, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2016, 232 pp. | MR

[35] K. K. Frolov, “Otsenki sverkhu pogreshnosti kvadraturnykh formul na klassakh funktsii”, DAN SSSR, 231:4 (1976), 818–821 | MR | Zbl

[36] K. K. Frolov, Kvadraturnye formuly na klassakh funktsii, Dis. ... kand. fiz. mat. nauk, VTs AN SSSR., M., 1979

[37] K. Chandrasekharan, Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, M., 1974, 188 pp.

[38] L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovol'skii, N. N. Dobrovolsky, “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems. Solid Mechanics and Its Applications, 211 (2014), 23–62 | DOI | MR | Zbl

[39] Hua Loo Keng, Wang Yuan, Applications of Number Theory to Numerical Analysis, Springer-Verlag, Berlin, 1981 | MR | Zbl

[40] M. Griebel, “Sparse grids for the Schrodinger equation”, ESAIM-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique, 41:2 (2007), 215 | MR | Zbl

[41] B. Adcock, “Multivariate Modified Fourier Series and Application to Boundary Value Problems”, Numer. Math., 115:4 (2010), 511–552 | MR | Zbl

[42] J. Shen, L. L. Wang, “Sparse Spectral Approximations of High-Dimensional Problems Based on Hyperbolic Cross”, SIAM J. Numer. Anal., 48:3 (2010), 1087–1109 | MR | Zbl

[43] D. Huybrechs, A. Iserles, S. P. Norsett, “From High Oscillation to Rapid Approximation IV: Accelerating Convergence”, IMA J. Numer. Anal., 31:2 (2011), 442–468 | MR | Zbl

[44] J. Shen, L. L. Wang, H. Yu, “Approximations By Orthonormal Mapped Chebyshev Functions For Higher-Dimensional Problems in Unbounded Domains”, J. Comput. Appl. Math., 265 (2014), 264–275 | MR | Zbl

[45] A. Chernov, Duong Pham, “Sparse Tensor Product Spectral Galerkin Bem For Elliptic Problems With Random Input Data on a Spheroid”, Adv. Comput. Math., 41:1 (2015), 77–104 | MR | Zbl

[46] A. Chernov, D. Dung, “New Explicit-in-Dimension Estimates For the Cardinality of HighDimensional Hyperbolic Crosses and Approximation of Functions Having Mixed Smoothness”, J. Complex., 32:1 (2016), 92–121 | MR | Zbl

[47] X. Luo, X. Xu, H. Rabitz, “On the fundamental conjecture of HDMR: a Fourier analysis approach”, J. Math. Chem., 55:2 (2017), 632–660 | MR | Zbl