Estimation of the mean value of the remainder term in~the~asymptotic~formula for the sum of values of~an~arithmetical~function on a Beatty sequence
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 523-528.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the estimation of average values of $\Delta(\alpha,N)=\Delta(\alpha,0,N)$ and $\Delta(\alpha,\beta,N)$ with respect to $\alpha>1$ and $0\beta\alpha$ respectively, where $\Delta(\alpha,\beta,N)$ denotes the remainder term in the formula of the form $$\sum_{n\leq N}f([\alpha n+\beta])=\frac{1}{\alpha}\sum_{m\leq \alpha N+\beta}f(m)+\Delta(\alpha,\beta,N),$$ for an arbitrary number-theoretical fuction $f(n)$.
Keywords: Beatty sequences, integer sequence, mean value of a number-theoretic function.
@article{CHEB_2018_19_2_a35,
     author = {A. V. Begunts and D. V. Goryashin},
     title = {Estimation of the mean value of the remainder term in~the~asymptotic~formula for the sum of values of~an~arithmetical~function on a {Beatty} sequence},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {523--528},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a35/}
}
TY  - JOUR
AU  - A. V. Begunts
AU  - D. V. Goryashin
TI  - Estimation of the mean value of the remainder term in~the~asymptotic~formula for the sum of values of~an~arithmetical~function on a Beatty sequence
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 523
EP  - 528
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a35/
LA  - ru
ID  - CHEB_2018_19_2_a35
ER  - 
%0 Journal Article
%A A. V. Begunts
%A D. V. Goryashin
%T Estimation of the mean value of the remainder term in~the~asymptotic~formula for the sum of values of~an~arithmetical~function on a Beatty sequence
%J Čebyševskij sbornik
%D 2018
%P 523-528
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a35/
%G ru
%F CHEB_2018_19_2_a35
A. V. Begunts; D. V. Goryashin. Estimation of the mean value of the remainder term in~the~asymptotic~formula for the sum of values of~an~arithmetical~function on a Beatty sequence. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 523-528. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a35/

[1] Abercrombie A., Banks W., Shparlinski I., “Arithmetic functions on Beatty sequences”, Acta Arith., 136 (2009), 81–89 | DOI | MR | Zbl

[2] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lectures on mathematical analysis, Drofa, M., 2004

[3] Begunts A. V., “An analogue of the Dirichlet divisor problem”, Moscow Univ. Math. Bull., 59:6 (2004), 37–41 | MR | Zbl

[4] Begunts A. V., Goryashin D. V., “Topical problems concerning Beatty sequences”, Chebyshevskii Sbornik, 18:4, 97–105 (Russian) | DOI | MR

[5] Begunts A. V., Goryashin D. V., “On Beatty sequences”, Theses of XV International conference «Algebra, number theory and discrete geometry: modern problems and applications», dedicated to hundredth birthday of professor N. M. Korobov (Tula, 28—31 May 2018), 2018, 206–208 (Russian)