Almost periodic functions and property of universality of Dirichlet L-functions
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 368-376
Voir la notice de l'article provenant de la source Math-Net.Ru
The term "universality" for functions was introduced in the early 1970s by E.M. Voronin and the meaning that is embedded in this concept is that a very general class of analytic functions admits approximation by vertical shifts of a given function. In 1975, S.M. Voronin proved the universality property for Riemann zeta-functions, and in 1977 for the Dirichlet L-function.
In this paper we propose a proof of the universality property for Dirichlet L-functions that is different from SM's proof. Voronin, based on a rapid approximation in the critical band of Dirichlet L-functions by Dirichlet polynomials.
Keywords:
universality property, approximate Dirichlet polynomials, almost periodic functions.
@article{CHEB_2018_19_2_a25,
author = {V. N. Kuznetsov and O. A. Matveeva},
title = {Almost periodic functions and property of universality of {Dirichlet} {L-functions}},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {368--376},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a25/}
}
TY - JOUR AU - V. N. Kuznetsov AU - O. A. Matveeva TI - Almost periodic functions and property of universality of Dirichlet L-functions JO - Čebyševskij sbornik PY - 2018 SP - 368 EP - 376 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a25/ LA - ru ID - CHEB_2018_19_2_a25 ER -
V. N. Kuznetsov; O. A. Matveeva. Almost periodic functions and property of universality of Dirichlet L-functions. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 368-376. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a25/