Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_2_a25, author = {V. N. Kuznetsov and O. A. Matveeva}, title = {Almost periodic functions and property of universality of {Dirichlet} {L-functions}}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {368--376}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a25/} }
TY - JOUR AU - V. N. Kuznetsov AU - O. A. Matveeva TI - Almost periodic functions and property of universality of Dirichlet L-functions JO - Čebyševskij sbornik PY - 2018 SP - 368 EP - 376 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a25/ LA - ru ID - CHEB_2018_19_2_a25 ER -
V. N. Kuznetsov; O. A. Matveeva. Almost periodic functions and property of universality of Dirichlet L-functions. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 368-376. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a25/
[1] S. M. Voronin, “Ob universal'nosti dzeta-funkcii Rimana”, Izv. AN SSSR, Serija Matematika, 39:3 (1975), 457–486
[2] S. M. Voronin, “On the functional independence of the Dirichlet L-function”, Acta Arith., 27 (1975), 493–503 | DOI | Zbl
[3] S. M. Voronin, Analytic properties of generating Dirichlet functions of arithmetic objects, Thesis for the academic degree of the Dr. of Science, MIAN SSSR, 1977, 90 pp.
[4] Matveeva O. A., “Approksimacionnye polinomy i povedenie L-funkcij Dirihle v kriticheskoj polose”, Izvestija Sarat. un-ta. Matematika, Mehanika. Informatika, 2013, no. 4-2, 80–84
[5] Kuznetsov V. N., Matveeva O. A., “O granichnom povedenii odnogo klassa rjadov Dirihle s mul'tiplikativnymi kojefficientami”, Chebyshevskij sbornik, 17:3 (2016), 115–124 | DOI
[6] Kuznetsov V. N., Matveeva O. A., “Approksimacionnyj podhod v nekotoryh zadachah teorii rjadov Dirihle s mul'tiplikativnymi kojefficientami”, Chebyshevskij sbornik, 17:4 (2016), 124–131 | DOI | MR | Zbl
[7] Kuznetsov V. N., Matveeva O. A., “Approximation Dirichlet polynomials and some properties of Dirichlet L-functions”, Chebyshevskij sbornik, 18:4 (2017), 296–304 | MR
[8] H. Mishou, “The joint distribution of the Riemann zeta-function and Hurwitz zeta-function”, Lith. Math. J., 47:1 (2007), 32–47 | DOI | MR | Zbl
[9] A. Laurincikas, “The universality of zeta-functions”, Acta Appe. Math., 78:1–3 (2003), 251–271 | DOI | MR | Zbl
[10] R. Kacinskait, A. Laurincikas, “The joint distribution of periodic zeta-function”, Studia Sci. Math. Hungar., 48:2 (2011), 257–279 | MR | Zbl
[11] E. Buivydas, A. Laurincikas, “A discrete version of the Mishou theorem”, Ramanujan J., 38:2 (2015), 331–347 | DOI | MR | Zbl
[12] A. Laurincikas, R. Garunkstis, The Lerch Zeta-function, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl
[13] B. P. Demidovich, Lekcii po matematicheskoj teorii ustojchivosti, MSU publ., M., 1998, 480 pp.
[14] B. Ja. Levin, Raspredlenie kornej celyh funkcij, Izd-vo tehniko-teoreticheskoj literatury, M., 1956, 632 pp.
[15] Titchmarsh E. K., Teorija dzeta-funkcii Rimana, IL, M., 1953, 407 pp.