Almost periodic functions and property of universality of Dirichlet L-functions
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 368-376

Voir la notice de l'article provenant de la source Math-Net.Ru

The term "universality" for functions was introduced in the early 1970s by E.M. Voronin and the meaning that is embedded in this concept is that a very general class of analytic functions admits approximation by vertical shifts of a given function. In 1975, S.M. Voronin proved the universality property for Riemann zeta-functions, and in 1977 for the Dirichlet L-function. In this paper we propose a proof of the universality property for Dirichlet L-functions that is different from SM's proof. Voronin, based on a rapid approximation in the critical band of Dirichlet L-functions by Dirichlet polynomials.
Keywords: universality property, approximate Dirichlet polynomials, almost periodic functions.
@article{CHEB_2018_19_2_a25,
     author = {V. N. Kuznetsov and O. A. Matveeva},
     title = {Almost periodic functions and property of universality of {Dirichlet} {L-functions}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {368--376},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a25/}
}
TY  - JOUR
AU  - V. N. Kuznetsov
AU  - O. A. Matveeva
TI  - Almost periodic functions and property of universality of Dirichlet L-functions
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 368
EP  - 376
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a25/
LA  - ru
ID  - CHEB_2018_19_2_a25
ER  - 
%0 Journal Article
%A V. N. Kuznetsov
%A O. A. Matveeva
%T Almost periodic functions and property of universality of Dirichlet L-functions
%J Čebyševskij sbornik
%D 2018
%P 368-376
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a25/
%G ru
%F CHEB_2018_19_2_a25
V. N. Kuznetsov; O. A. Matveeva. Almost periodic functions and property of universality of Dirichlet L-functions. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 368-376. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a25/