Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_2_a1, author = {M. G. Bashmakova and E. S. Zolotukhina}, title = {On estimate of irrationality measure of the numbers $\sqrt{4k+3}\ln{\frac{\sqrt{4k+3}+1}{\sqrt{4k+3}-1}}$ and $\frac{1}{\sqrt{k}}\mathrm{arctg}\,{\frac{1}{\sqrt{k}}}$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {15--29}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a1/} }
TY - JOUR AU - M. G. Bashmakova AU - E. S. Zolotukhina TI - On estimate of irrationality measure of the numbers $\sqrt{4k+3}\ln{\frac{\sqrt{4k+3}+1}{\sqrt{4k+3}-1}}$ and $\frac{1}{\sqrt{k}}\mathrm{arctg}\,{\frac{1}{\sqrt{k}}}$ JO - Čebyševskij sbornik PY - 2018 SP - 15 EP - 29 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a1/ LA - ru ID - CHEB_2018_19_2_a1 ER -
%0 Journal Article %A M. G. Bashmakova %A E. S. Zolotukhina %T On estimate of irrationality measure of the numbers $\sqrt{4k+3}\ln{\frac{\sqrt{4k+3}+1}{\sqrt{4k+3}-1}}$ and $\frac{1}{\sqrt{k}}\mathrm{arctg}\,{\frac{1}{\sqrt{k}}}$ %J Čebyševskij sbornik %D 2018 %P 15-29 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a1/ %G ru %F CHEB_2018_19_2_a1
M. G. Bashmakova; E. S. Zolotukhina. On estimate of irrationality measure of the numbers $\sqrt{4k+3}\ln{\frac{\sqrt{4k+3}+1}{\sqrt{4k+3}-1}}$ and $\frac{1}{\sqrt{k}}\mathrm{arctg}\,{\frac{1}{\sqrt{k}}}$. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 15-29. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a1/