Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_2_a1, author = {M. G. Bashmakova and E. S. Zolotukhina}, title = {On estimate of irrationality measure of the numbers $\sqrt{4k+3}\ln{\frac{\sqrt{4k+3}+1}{\sqrt{4k+3}-1}}$ and $\frac{1}{\sqrt{k}}\mathrm{arctg}\,{\frac{1}{\sqrt{k}}}$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {15--29}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a1/} }
TY - JOUR AU - M. G. Bashmakova AU - E. S. Zolotukhina TI - On estimate of irrationality measure of the numbers $\sqrt{4k+3}\ln{\frac{\sqrt{4k+3}+1}{\sqrt{4k+3}-1}}$ and $\frac{1}{\sqrt{k}}\mathrm{arctg}\,{\frac{1}{\sqrt{k}}}$ JO - Čebyševskij sbornik PY - 2018 SP - 15 EP - 29 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a1/ LA - ru ID - CHEB_2018_19_2_a1 ER -
%0 Journal Article %A M. G. Bashmakova %A E. S. Zolotukhina %T On estimate of irrationality measure of the numbers $\sqrt{4k+3}\ln{\frac{\sqrt{4k+3}+1}{\sqrt{4k+3}-1}}$ and $\frac{1}{\sqrt{k}}\mathrm{arctg}\,{\frac{1}{\sqrt{k}}}$ %J Čebyševskij sbornik %D 2018 %P 15-29 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a1/ %G ru %F CHEB_2018_19_2_a1
M. G. Bashmakova; E. S. Zolotukhina. On estimate of irrationality measure of the numbers $\sqrt{4k+3}\ln{\frac{\sqrt{4k+3}+1}{\sqrt{4k+3}-1}}$ and $\frac{1}{\sqrt{k}}\mathrm{arctg}\,{\frac{1}{\sqrt{k}}}$. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 15-29. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a1/
[1] Hata M., “Legendre type polynomials and irrationality measures”, J. Reine Angew. Math., 407:1 (1990), 99–125 | MR | Zbl
[2] Hata M., “Rational approximations to $\pi$ and some other numbers”, Acta Arith, LXIII:4 (1993), 325–349 | MR
[3] F. Amoroso, C. Viola, “Approximation measures for logarithms of algebraic numbers”, Ann. Scuola normale superiore (Pisa), XXX (2001), 225–249 | MR | Zbl
[4] A. Heimonen, T. Matala-aho, K. Väänänen, “On irrationality measures of the values of Gauss hypergeometric function”, Manuscripta Math., 81 (1993), 183–202 | DOI | MR | Zbl
[5] A. Heimonen, T. Matala-aho, K. V\"{aä}nänen, “An application of Jacobi type polynomials to irrationality measures”, Bull. Austral. Math. Soc., 50:2 (1994), 225–243 | DOI | MR | Zbl
[6] G. Rhin, “Approximants de Padé et mesures effectives d'irrationalité”, Progr. in Math., 71 (1987), 155–164 | DOI | MR | Zbl
[7] V. H. Salikhov, “On the irrationality measures of $\ln3$”, Doklady Mathematics, 417:6 (2007), 753–755 (Russian) | MR | Zbl
[8] Salikhov V. H., “On the irrationality measures of $\pi$”, Russian Mathematical Surveys, 63:3 (2008), 163–164 (Russian) | DOI | MR | Zbl
[9] Salnikova E. S., “On irrationality measures of some values of the Gauss function”, Chebyshevskii Sbornik, 8:2 (2007), 88–96 (Russian) | MR | Zbl
[10] E. S. Salnikova, “Diophantine approximations of $\log2$ and other logarithms”, Mathematical Notes, 83:3 (2008), 428–438 (Russian) | DOI | MR | Zbl
[11] E. S. Salnikova, “Approximations of some logarithms by numbers from the fields $\mathbb{Q}$ and $\mathbb{Q}\sqrt{d}$”, Journal of Mathematical Sciences, 16:6 (2010), 139–155 (Russian)
[12] E. B. Tomashevskaya, “On the irrationality measure of the number $\log 5+\frac{\pi}{2}$ and some other numbers”, Chebyshevskii Sbornik, 8:2 (2007), 97–108 (Russian) | MR | Zbl
[13] E. B. Tomashevskaya, Diophantine approximations of a values of some analytic functions, Dissertation, Bryansk State technical University, 2009, 99 pp. (Russian)
[14] M. G. Bashmakova, “Approximation of values of the Gauss hypergeometric function by rational fractions”, Mathematical Notes, 88:6 (2010), 785–797 (Russian) | DOI | Zbl
[15] M. G. Bashmakova, “The estimate of the irrationality measures of logarithm of “Golden section””, Chebyshevskii Sbornik, 11:1 (2010), 47–53 (Russian) | MR | Zbl
[16] V. A. Androsenko, “The estimate of the irrationality measures of values of the Gauss hypergeometric function”, Chebyshevskii Sbornik, 11:1 (2010), 7–14 (Russian) | MR | Zbl
[17] M. Yu. Luchin, “The estimate of the irrationality measures of number $\ln\frac{7}{4}$”, Chebyshevskii Sbornik, 14:2 (2013), 123–131 (Russian) | Zbl
[18] M. Yu. Luchin, V. H. Salikhov, “Approximation of $\ln{2}$ by numbers from the field $\mathbb{Q}\sqrt{2}$”, Izvestiya: Mathematics, 82:3 (2018), 108–135 (Russian) | DOI | MR | Zbl
[19] Q. Wu, L. Wang, “On the irrationality measure of $\log3$”, Journal of Number Theory, 142 (2014), 264–273 | DOI | MR | Zbl
[20] V. A. Androsenko, “Irrationality measure of the number $\frac{\pi}{\sqrt{3}}$”, Izvestiya: Mathematics, 79:1 (2015), 3–20 (Russian) | DOI | MR | Zbl
[21] Marcovecchio R., “The Rhin-Viola method for $\ln 2$”, Acta Aritm., 139:2 (2009), 147–184 | DOI | MR | Zbl
[22] M. G. Bashmakova, E. S. Zolotukhina, “On irrationality measures of the numbers $\sqrt{d}\ln\frac{\sqrt{d}+1}{\sqrt{d}-1}$”, Chebyshevskii Sbornik, 18:1 (2017), 29–43 (Russian) | DOI | MR | Zbl
[23] Polyanskii A., “On the irrationality measure of certain numbers”, Comb. and Number Theory, 1:4 (2011), 80–90 | MR | Zbl
[24] Polyanskii A. A., On the irrationality measure of certain numbers, Dissertation, Lomonosov State University, 2013, 138 pp. (Russian) | Zbl
[25] Huttner M., “Irrationalité de certaines intégrales hypergéométriques”, J. Number Theory, 26 (1987), 166–178 | DOI | MR | Zbl