Hypothesis about "barier series" for the zeta-functions of monoids with the exponential sequence of primes
Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 106-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work continues the study of a new class of Dirichlet series — the zeta functions of monoids of natural numbers. First of all, we study in detail the zeta function $\zeta(M(q)|\alpha)$ of geometric progression $M(q)$ with initial value equal to 1 and an arbitrary natural common ratio $q>1$, which is the simplest monoid of natural numbers with a unique decomposition into prime elements of the monoid. For a meromorphic function $\zeta(M(q)|\alpha)=\frac{q^\alpha}{q^\alpha-1}$, which have poles $$ S(M (q))=\left\{\left. \frac{2\pi i k}{\ln q}\right| k\in\mathbb{Z}\right\} $$ representations are received: \begin{gather*} \zeta(M(q)|\alpha)=\frac{q^{\frac{\alpha}{2}}}{\alpha\ln q}\prod_{n=1}^{\infty}\left(1+\frac{\alpha^2\ln^2 q}{4\pi^2 n^2}\right)^{-1}=\frac{1}{2}+\frac{1}{\alpha\ln q}+\sum_{n=1}^{\infty}\frac{2\alpha\ln q}{\alpha^2\ln^2 q+4n^2\pi^2}= \\ =\frac{q^{\frac{\alpha}{2}}\alpha\ln q}{4\pi^2}\Gamma\left(\frac{\alpha i\ln q }{2\pi}\right)\Gamma\left(-\frac{\alpha i\ln q }{2\pi}\right). \end{gather*} For the zeta function $\zeta(M(\vec{p})|\alpha)$ of the monoid $M(\vec{p})$ with a finite number of primes $\vec{p}=(p_1,\ldots,p_n)$ the decomposition into an infinite product is obtained $$ \zeta(M(\vec{p})|\alpha)=\frac{P(\vec{p})^{\frac{\alpha}{2}}}{\alpha^nQ(\vec{p})}\prod_{\nu=1}^{n}\prod_{m=1}^{\infty}\left(1+\frac{\alpha^2\ln^2 p_\nu}{4\pi^2 m^2}\right)^{-1}, $$ where $P (\vec{p})=p_1\ldots p_n$, $Q (\vec{p})=\ln p_1\ldots \ln p_n$, and a functional equation is found $$ \zeta (M (\vec{p})|-\alpha)=(-1)^n\frac{\zeta (M (\vec{p})|\alpha)}{P (\vec{p})^\alpha}. $$ For the monoid of natural numbers $M^*(\vec{p})= \mathbb{N}\cdot M^{-1} (\vec{p})$ with a unique decomposition into prime elements, which consists of natural numbers $n$ coprime with $P (\vec{p})=p_1\ldots p_n$, and for the Euler product $P (M^*(\vec{p}) / \ alpha)$, which consists of factors for all primes other than $p_1,\ldots, p_n$, a functional equation is found $$ \zeta(M^*(\vec{p})|\alpha)=M(\vec{p},\alpha) \zeta(M^*(\vec{p})|1-\alpha), $$ where $$ M(\vec{p},\alpha)=M(\alpha)\cdot\frac{M_1(\vec{p},\alpha)}{M_1(\vec{p},1-\alpha)}, \quad M_1(\vec{p},\alpha)=\prod_{\nu=1}^{n}\left(1-\frac{1}{p_\nu^\alpha}\right). $$ It is proved that for any infinite set of primes $\mathbb{P}_1$ there is no analytic function equal to $$\lim\limits_{n\to\infty} \zeta(M(\vec{p}_n)|\alpha)$$ on the whole complex plane. The hypothesis about the barrier series for any exponential set of $ PE $ prime numbers is formulated. In conclusion, topical problems with zeta-functions of monoids of natural numbers that require further investigation are considered.
Keywords: Riemann zeta function, Dirichlet series, zeta function of monoids of natural numbers, Euler product, logarithm of the Euler product.
@article{CHEB_2018_19_1_a7,
     author = {N. N. Dobrovolsky and M. N. Dobrovolsky and N. M. Dobrovolsky and I. N. Balaba and I. Yu. Rebrova},
     title = {Hypothesis about "barier series" for the zeta-functions of monoids with the exponential sequence of primes},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {106--123},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a7/}
}
TY  - JOUR
AU  - N. N. Dobrovolsky
AU  - M. N. Dobrovolsky
AU  - N. M. Dobrovolsky
AU  - I. N. Balaba
AU  - I. Yu. Rebrova
TI  - Hypothesis about "barier series" for the zeta-functions of monoids with the exponential sequence of primes
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 106
EP  - 123
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a7/
LA  - ru
ID  - CHEB_2018_19_1_a7
ER  - 
%0 Journal Article
%A N. N. Dobrovolsky
%A M. N. Dobrovolsky
%A N. M. Dobrovolsky
%A I. N. Balaba
%A I. Yu. Rebrova
%T Hypothesis about "barier series" for the zeta-functions of monoids with the exponential sequence of primes
%J Čebyševskij sbornik
%D 2018
%P 106-123
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a7/
%G ru
%F CHEB_2018_19_1_a7
N. N. Dobrovolsky; M. N. Dobrovolsky; N. M. Dobrovolsky; I. N. Balaba; I. Yu. Rebrova. Hypothesis about "barier series" for the zeta-functions of monoids with the exponential sequence of primes. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 106-123. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a7/

[1] Bombieria E., Ghoshb A., “Around the Davenport–Heilbronn function”, Uspekhi Mat. Nauk, 66:2(398) (2011), 15–66 | DOI | MR

[2] Voronin S. M., Izbrannye trudy: Matematika, ed. A. A. Karacuba, Izd-vo MGTU im. N. Je. Baumana, M., 2006, 480 pp.

[3] Voronin S. M., Karacuba A. A., Dzeta-funkcija Rimana, Izd-vo Fizmatlit, M., 1994, 376 pp. | MR

[4] Gurvic A., Kurant R., Teorija funkcij, Izd-vo Nauka, M., 1968, 618 pp.

[5] Demidov S. S., Morozova E. A., Chubarikov V. N., Rebrov I. Yu., Balaba I. N., Dobrovol'skii N. N., Dobrovol'skii N. M., Dobrovol'skaya L. P., Rodionov A. V., Pikhtil'kova O. A., “Number-theoretic method in approximate analysis”, Chebyshevskii Sbornik, 18:4 (2017), 6–85 | DOI | MR

[6] Dobrovol'skaja L. P., Dobrovol'skij M. N., Dobrovol'skij N. M., Dobrovol'skij N. N., “Giperbolicheskie dzeta-funkcii setok i reshjotok i vychislenie optimal'nyh kojefficientov”, Chebyshevskii Sbornik, 13:4(44) (2012), 4–107 | Zbl

[7] Dobrovol'skij M. N., “Funkcional'noe uravnenie dlja giperbolicheskoj dzeta-funkcii celochislennyh reshetok”, Doklady akademii nauk, 412:3 (2007), 302–304 | Zbl

[8] Dobrovolsky N. M., Dobrovolsky N. N., Soboleva V. N., Sobolev D. K., Dobrovol'skaya L. P., Bocharova O. E., “On hyperbolic Hurwitz zeta function”, Chebyshevskii Sbornik, 17:3 (2016), 72–105 | DOI | MR

[9] Dobrovolsky N. N., “The zeta-function is the monoid of natural numbers with unique factorization”, Chebyshevskii Sbornik, 18:4 (2017), 187–207 | DOI | MR

[10] Dobrovolsky N. N., “On monoids of natural numbers with unique factorization into prime elements”, Chebyshevskii Sbornik, 19:1 (2018)

[11] Davenport H., Mul'tiplikativnaja teorija chisel, Izd-vo Nauka, M., 1971, 200 pp. | MR

[12] Titchmarsh E. K., Teorija dzeta-funkcii Rimana, Izd-vo IL, M., 1953, 408 pp.

[13] Whittaker E. T., Watson D. N., A Course in modern analysis, v. 2, Transcendental function, Fizmatgiz, M., 1963, 516 pp.

[14] Shabat B. V., Introduction to complex analysis, Science, M., 1969, 576 pp.

[15] Chandrasekharan K., Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, M., 1974, 188 pp. | MR

[16] H. Davenport, H. Heilbronn, “On the zeros of certain Dirichlet series”, J. London Math. Soc., 11 (1936), 181–185 | DOI | MR

[17] L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovol'skii, N. N. Dobrovolsky, “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems, Solid Mechanics and Its Applications, 211, 2014, 23–62 | DOI | MR | Zbl