Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_1_a7, author = {N. N. Dobrovolsky and M. N. Dobrovolsky and N. M. Dobrovolsky and I. N. Balaba and I. Yu. Rebrova}, title = {Hypothesis about "barier series" for the zeta-functions of monoids with the exponential sequence of primes}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {106--123}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a7/} }
TY - JOUR AU - N. N. Dobrovolsky AU - M. N. Dobrovolsky AU - N. M. Dobrovolsky AU - I. N. Balaba AU - I. Yu. Rebrova TI - Hypothesis about "barier series" for the zeta-functions of monoids with the exponential sequence of primes JO - Čebyševskij sbornik PY - 2018 SP - 106 EP - 123 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a7/ LA - ru ID - CHEB_2018_19_1_a7 ER -
%0 Journal Article %A N. N. Dobrovolsky %A M. N. Dobrovolsky %A N. M. Dobrovolsky %A I. N. Balaba %A I. Yu. Rebrova %T Hypothesis about "barier series" for the zeta-functions of monoids with the exponential sequence of primes %J Čebyševskij sbornik %D 2018 %P 106-123 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a7/ %G ru %F CHEB_2018_19_1_a7
N. N. Dobrovolsky; M. N. Dobrovolsky; N. M. Dobrovolsky; I. N. Balaba; I. Yu. Rebrova. Hypothesis about "barier series" for the zeta-functions of monoids with the exponential sequence of primes. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 106-123. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a7/
[1] Bombieria E., Ghoshb A., “Around the Davenport–Heilbronn function”, Uspekhi Mat. Nauk, 66:2(398) (2011), 15–66 | DOI | MR
[2] Voronin S. M., Izbrannye trudy: Matematika, ed. A. A. Karacuba, Izd-vo MGTU im. N. Je. Baumana, M., 2006, 480 pp.
[3] Voronin S. M., Karacuba A. A., Dzeta-funkcija Rimana, Izd-vo Fizmatlit, M., 1994, 376 pp. | MR
[4] Gurvic A., Kurant R., Teorija funkcij, Izd-vo Nauka, M., 1968, 618 pp.
[5] Demidov S. S., Morozova E. A., Chubarikov V. N., Rebrov I. Yu., Balaba I. N., Dobrovol'skii N. N., Dobrovol'skii N. M., Dobrovol'skaya L. P., Rodionov A. V., Pikhtil'kova O. A., “Number-theoretic method in approximate analysis”, Chebyshevskii Sbornik, 18:4 (2017), 6–85 | DOI | MR
[6] Dobrovol'skaja L. P., Dobrovol'skij M. N., Dobrovol'skij N. M., Dobrovol'skij N. N., “Giperbolicheskie dzeta-funkcii setok i reshjotok i vychislenie optimal'nyh kojefficientov”, Chebyshevskii Sbornik, 13:4(44) (2012), 4–107 | Zbl
[7] Dobrovol'skij M. N., “Funkcional'noe uravnenie dlja giperbolicheskoj dzeta-funkcii celochislennyh reshetok”, Doklady akademii nauk, 412:3 (2007), 302–304 | Zbl
[8] Dobrovolsky N. M., Dobrovolsky N. N., Soboleva V. N., Sobolev D. K., Dobrovol'skaya L. P., Bocharova O. E., “On hyperbolic Hurwitz zeta function”, Chebyshevskii Sbornik, 17:3 (2016), 72–105 | DOI | MR
[9] Dobrovolsky N. N., “The zeta-function is the monoid of natural numbers with unique factorization”, Chebyshevskii Sbornik, 18:4 (2017), 187–207 | DOI | MR
[10] Dobrovolsky N. N., “On monoids of natural numbers with unique factorization into prime elements”, Chebyshevskii Sbornik, 19:1 (2018)
[11] Davenport H., Mul'tiplikativnaja teorija chisel, Izd-vo Nauka, M., 1971, 200 pp. | MR
[12] Titchmarsh E. K., Teorija dzeta-funkcii Rimana, Izd-vo IL, M., 1953, 408 pp.
[13] Whittaker E. T., Watson D. N., A Course in modern analysis, v. 2, Transcendental function, Fizmatgiz, M., 1963, 516 pp.
[14] Shabat B. V., Introduction to complex analysis, Science, M., 1969, 576 pp.
[15] Chandrasekharan K., Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, M., 1974, 188 pp. | MR
[16] H. Davenport, H. Heilbronn, “On the zeros of certain Dirichlet series”, J. London Math. Soc., 11 (1936), 181–185 | DOI | MR
[17] L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovol'skii, N. N. Dobrovolsky, “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems, Solid Mechanics and Its Applications, 211, 2014, 23–62 | DOI | MR | Zbl