On monoids of natural numbers with unique factorization into prime elements
Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 79-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper continues research on a new class of Dirichlet series — zeta functions of monoids of natural numbers. The inverse Dirichlet series for zeta functions of monoids of natural numbers with unique factorization into prime elements and for zeta-functions of sets of prime elements of monoids with unique factorization into prime elements are studied. For any $\beta>1$ examples of Dirichlet series with an abscissa of absolute convergence $\sigma=\frac{1}{\beta}$ are constructed. For any natural $\beta>1$ examples of a pair of zeta functions $\zeta(B|\alpha)$ and $\zeta(A_{B,\beta}|\alpha)$ with the equality $\sigma_{A_{B,\beta}}=\frac{\sigma_B}{\beta}$ are constructed. Various examples of monoids and corresponding zeta functions of monoids are considered. A number of properties of the zeta functions of monoids of natural numbers with unique factorization into prime factors are obtained. An explicit form of the inverse series to the zeta-function of the set of primes supplemented by one is found. An explicit form of the ratio of the Riemann zeta-function to the zeta-function of the set of primes supplemented by one is found. Nested sequences of monoids generated by primes are considered. For the zeta-functions of these monoids the nesting principle is formulated, which allows to transfer the results about the coefficients of one zeta-functions to the coefficients of other zeta-functions. In this paper the general form of all monoids of natural numbers with unique factorization into prime factors was described for the first time. In conclusion, topical problems for zeta-functions of monoids of natural numbers that require further study are considered.
Keywords: Riemann zeta function, Dirichlet series, zeta function of monoid of natural numbers, Euler product.
@article{CHEB_2018_19_1_a6,
     author = {N. N. Dobrovolsky},
     title = {On monoids of natural numbers with unique factorization into prime elements},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {79--105},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a6/}
}
TY  - JOUR
AU  - N. N. Dobrovolsky
TI  - On monoids of natural numbers with unique factorization into prime elements
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 79
EP  - 105
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a6/
LA  - ru
ID  - CHEB_2018_19_1_a6
ER  - 
%0 Journal Article
%A N. N. Dobrovolsky
%T On monoids of natural numbers with unique factorization into prime elements
%J Čebyševskij sbornik
%D 2018
%P 79-105
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a6/
%G ru
%F CHEB_2018_19_1_a6
N. N. Dobrovolsky. On monoids of natural numbers with unique factorization into prime elements. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 79-105. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a6/

[1] Ajgner M., Kombinatornaja teorija, Izd-vo Mir, M., 1982, 558 pp.

[2] Bombieria E., Ghoshb A., “Around the Davenport-Heilbronn function”, Uspekhi Mat. Nauk, 66:2(398) (2011), 15–66 | DOI

[3] Voronin S. M., Izbrannye trudy: Matematika, ed. A. A. Karacuba, Izd-vo MGTU im. N. Je. Baumana, M., 2006, 480 pp.

[4] Voronin S. M., Karacuba A. A., Dzeta-funkcija Rimana, Izd-vo Fizmatlit, M., 1994, 376 pp.

[5] Dobrovol'skaja L. P., Dobrovol'skij M. N., Dobrovol'skij N. M., Dobrovol'skij N. N., “Giperbolicheskie dzeta-funkcii setok i reshjotok i vychislenie optimal'nyh kojefficientov”, Chebyshevskii Sbornik, 13:4(44) (2012), 4–107

[6] Dobrovol'skij M. N., “Funkcional'noe uravnenie dlja giperbolicheskoj dzeta-funkcii celochislennyh reshetok”, Doklady akademii nauk, 412:3 (2007), 302–304 | Zbl

[7] Dobrovolsky N. M., Dobrovolsky N. N., Soboleva V. N., Sobolev D. K., Dobrovol'skaya L. P., Bocharova O. E., “On hyperbolic Hurwitz zeta function”, Chebyshevskii Sbornik, 17:3 (2016), 72–105 | DOI

[8] Dobrovolsky N. N., “The zeta-function is the monoid of natural numbers with unique factorization”, Chebyshevskii Sbornik, 18:4 (2017), 187–207 | DOI

[9] Davenport H., Mul'tiplikativnaja teorija chisel, Izd-vo Nauka, M., 1971, 200 pp.

[10] Gurvic A., Kurant R., Teorija funkcij, Izd-vo Nauka, M., 1968, 618 pp.

[11] Prahar K., Raspredelenie prostyh chisel, per. s nem., Izd-vo Mir, M., 1967, 511 pp.

[12] Privalov I. I., Vvedenie v teoriju funkcij kompleksnogo peremennogo, Izd-vo Nauka, M., 1977, 444 pp.

[13] Stenli R., Perechislitel'naja kombinatorika, Izd-vo Mir, M., 1990, 440 pp.

[14] Titchmarsh E. K., Teorija dzeta-funkcii Rimana, Izd-vo IL, M., 1952, 407 pp.

[15] Chandrasekharan K., Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, M., 1974, 188 pp.

[16] Chandrasekharan K., Arifmeticheskie funkcii, per. s angl., Izd-vo Nauka, M., 1975, 272 pp.

[17] H. Davenport, H. Heilbronn, “On the zeros of certain Dirichlet series”, J. London Math. Soc., 11 (1936), 181–185 | DOI | MR

[18] L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovol'skii, N. N. Dobrovolsky, “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems, Solid Mechanics and Its Applications, 211, 2014, 23–62 | DOI | MR | Zbl