Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_1_a4, author = {N. M. Glazunov}, title = {Duality in abelian varieties and formal groups over local fields}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {44--56}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a4/} }
N. M. Glazunov. Duality in abelian varieties and formal groups over local fields. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 44-56. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a4/
[1] Shafarevich I. R., Sochineniya, ch. 2, v. 3, Fizmatlit, M., 1996, 637 pp.
[2] Shafarevich I. R., Osnovy algebraicheskoj geometrii, V 2 t., Nauka, M., 1988 | MR
[3] Vvedenskij O. N., “Dvojstvennost' v ehllipticheskih krivyh nad lokal'nym polem. II”, Izv. AN SSSR. Ser.: Matematika, 30:4 (1966), 891—922
[4] Vvedenskij O. N., “O lokal'nyh “polyah klassov” ehllipticheskih krivyh”, Izv. AN SSSR. Ser.: Matematika, 37:1 (1973), 20—88 | MR
[5] Vvedenskij O. N., “O “universal'nyh normah” formal'nyh grupp, opredelennyh nad kol'com lokal'nogo polya”, Izv. AN SSSR. Ser.: Matematika, 37:4 (1973), 737—751 | MR
[6] Vvedenskij O. N., “O kvazi-lokal'nyh “polyah klassov” ehllipticheskih krivyh. I”, Izv. AN SSSR. Ser.: Matematika, 40:5 (1976), 969—992 | MR
[7] Vvedenskij O. N., “O sparivaniyah v ehllipticheskih krivyh nad global'nymi polyami”, Izv. AN SSSR. Ser.: Matematika, 42:2 (1978), 237—260 | MR
[8] Vvedenskij O. N., “Ehffekt Artina v abelevyh mnogoobraziyah. II”, Izv. AN SSSR. Ser.: Matematika, 45:1 (1981), 23—46 | MR
[9] Miln Dzh., Ehtal'nye kogomologii, Mir, M., 1983, 393 pp. | MR
[10] Serre J.-P., “Groupes proalgebriques”, Publications mathematiques IHES, 7, 1960, 65 pp. | MR | Zbl
[11] Tate J., “Duality theorems in Galois cohomology over number fields”, Proceedings of Int. Congress of Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1962, 288—295 | MR
[12] Shatz S. S., “Cohomology of artinian group schemes over local fields”, Ann. of Math., 79:2 (1964), 411—449 | DOI | MR | Zbl
[13] Grothendieck A., Artin M., Verdier J. L., Théorie des Topos et cohomologie étale des schémas (SGA4), Lecture Notes in Math., 269, 270, 305, Springer-Verlag, Berlin–N.Y., 1972 | DOI | MR
[14] Lichtenbaum S., “The Weil-etale topology for number rings”, Ann. of Math., 170:2 (2009), 657—683 | DOI | MR | Zbl
[15] Bosch S., Liu Q., “Rational points of the group of components of a Néron model”, Manuscripta math., 98 (1999), 275—293 | DOI | MR | Zbl
[16] Morin B., “The Weil-étale fundamental group of a number field. II”, Sel. Math., New Ser., 17:1 (2011), 67—137 | DOI | MR | Zbl
[17] Saavedra R., Catégories Tannakiennes, Lecture Notes in Math., 265, Springer-Verlag, Berlin–N.Y., 1972, 418 pp. | MR
[18] Nori M., “On the representations of the fundamental group”, Compos. Math., 33:1 (1976), 29—41 | MR | Zbl
[19] Broshi M., “$G$-torsors over a Dedekind scheme”, J. Pure Appl. Algebra, 217:1 (2013), 11—19 | DOI | MR | Zbl
[20] Conrad B., “Reductive group schemes”, Autour des schémas en groupes, École d'Été “Schémas en groupes”, I, Société Mathématique de France (SMF), Paris, 2014, 42—43 ; 93—444 | MR | Zbl
[21] Biswas I., Dos Santos João Pedro P., “Abelianization of the $F$-divided fundamental group scheme”, Proc. Indian Acad. Sci., Math. Sci., 127:2 (2017), 281—287 | DOI | MR | Zbl
[22] Tziolas N., “Quotients of schemes by $\alpha_p$ or $\mu_p$ actions in characteristic $p > 0$”, Manuscr. Math., 152:1–2 (2017), 247—279 | DOI | MR | Zbl