Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_1_a11, author = {E. V. Meshcherina and O. A. Pikhtil'kova}, title = {The development of the concept of "artinian" for {Lie} algebras}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {167--175}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a11/} }
E. V. Meshcherina; O. A. Pikhtil'kova. The development of the concept of "artinian" for Lie algebras. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 167-175. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a11/
[1] Lambek I., Rings and modules, Mir, M., 1971, 279 pp.
[2] Herstein I., Noncommutative rings, Mir, M., 1972, 191 pp.
[3] Mescherina E.V., “History of the development of the concept of “inner ideal””, History of Science and Engineering, 2015, no. 9, 3–7
[4] McCrimmon K., “Inner ideals in quadratic Jordan algebras”, Trans. Amer. Math. Soc., 159 (1971), 445–468 | DOI | MR | Zbl
[5] Katz J., “Isomorphisms of the lattice of inner ideals of certain quadratic Jordan algebras”, Trans. Amer. Math. Soc., 185 (1973), 309–329 | DOI | MR
[6] Bakhturin Yu. A., “Artinian special Lie algebras”, Algebra, Izd-vo MGU, M., 1982, 24–26
[7] Pikhtilkov S.A., “Artinian special Lie algebra”, Algorithmic problems of the theory of groups and semigroups, Izd-vo Tul. gos. ped. univ. im. L.N. Tolstogo, Tula, 2001, 189–194
[8] Pikhtilkov S.A., Polyakov V.M., “About locally nilpotent Artinian Lie algebras”, Chebyshevskii sbornik, 6:1 (2005), 163–169 | Zbl
[9] Pikhtilkov S.A., The structural theory of special Lie algebras, Izd-vo TGPU im. L.N. Tolstogo, Tula, 2005, 45–48
[10] Pikhtilkov S. A., Polyakov V. M., “Artinal special Lie superalgebras”, Bull. Academie de stinte a republicii Moldova. Matematica, 44:1 (2004), 116–119 | MR | Zbl
[11] Benkart G., “On inner ideals and ad-nilpotent elements of Lie algebras”, Transaction of the American Mathematical Society, 232 (1977), 61–81 | DOI | MR | Zbl
[12] Benkart G., “The Lie inner ideal structure of associative rings”, J. of Algebra, 43 (1976), 561–584 | DOI | MR | Zbl
[13] Fernandez Lopez A., Garcia E., Gomez Lozano M., “Inner ideals of finitary simple Lie algebras”, J. Lie Theory, 16 (2006), 97–114 | MR | Zbl
[14] Fernandez Lopez A., Garcia E., Gomez Lozano M., “Inner ideal structure of nearly artinian Lie algebras”, Proc. Amer. Math. Soc., 137 (2009), 1–9 | MR | Zbl
[15] Fernandez Lopez A., Garcia E., Gomez Lozano M., “An artinian theory for Lie algebras”, J. of Algebra, 319:3 (2008), 938–951 | DOI | MR | Zbl
[16] Benkart G., Fernandez Lopez A., “The inner ideal structure of associative rings revisited”, Communications in Algebra, 37 (2009), 3833–3850 | DOI | MR | Zbl
[17] Meshcherina E.V., Pichtilkov S.A., “On some properties of inner ideals of a Lie algebra”, Vestnik OGU, 2013, no. 9 (158), 110–114
[18] Olshansky A.Yu., “Infinite group with subgroups of prime orders”, Izv. AN SSSR. Ser. mat., 44:2 (1980), 309–321
[19] Beidar K.I., Zaytsev M.V., Pikhtilkov S.A., “Lie algebras with the maximality condition on abelian subalgebras”, Vestnik MGU, Ser. 1. Mat., Mekh., 2002, no. 5, 27–32
[20] Meshcherina E.V., “On the different definitions of Artinian for Lie Algebras”, Chebyshevskii sbornik, 14:3 (47) (2013), 86–91
[21] Balaba I.N., Mikhalev A.V., Pikhtilkov S.A., “The primary radical of graded $\Omega$-groups”, Fundamentalnaya i prikladnaya matematika, 12:2 (2006), 159–174
[22] Meshcherina E.V., Pikhtilkov S.A., Pikhtilkova O.A., “On the problem of A.V. Mikhalev for Liealgebras”, Izvestiya Saratovskogo Universiteta. Novaya seriya. Seriya Mathematika. Mechanika. Informatika, 2013, no. 4-2, 84–89
[23] Blagovisnaya A.N., Pikhtilkov S.A., Pikhtilkova O.A., “On the properties of the primary radical of the weakly-Artinian Lie algebra”, Chebyshevskii sbornik, 18:1, 134–142 | DOI | Zbl