The development of the concept of "artinian" for Lie algebras
Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 167-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper is considered the development of the concept of "artinian" for Lie algebras. The concept of artinian was introduced for associative rings with the minimality condition. At the same time, it extended to modules and subalgebras. A little later they began to consider Artinian Jordan algebras. For such algebras the role of a one-sided ideal is played by a quadratic ideal or, as N. Djecobson called it, the inner ideal. Artinian for Lie algebras through ideals determined Yu.A. Bakhturin, S.A. Pikhtilkov and V.Рњ. Polyakov. They considered special Artinian Lie algebras. S.A. Pikhtilkov applied Artinian Lie algebras to construct the structural theory of special Lie algebras. Georgia Benkart defined the artinian for Lie algebras through inner ideals. F. Lopez, E. Garcia, G. Lozano explored the concept of the inner ideal applied to artinian with the help of Jordan pairs. The definition of artinian for Lie algebras in this paper is presented in three senses: via subalgebras, ideals, and inner ideals. The relationship established between these definitions is established by the authors earlier. Examples of Artinian Lie algebras are considered. The application of Artinian Lie algebras to the solution of the Mikhalev problem is described: the primary radical of the Artinian Lie algebra is solvable.
Keywords: Lie algebras, a subalgebra, Artinian Lie algebras, an inner ideal of a Lie algebra, a prime radical, finite-dimensional Lie algebras, infinite-dimensional Lie algebras, an associative ring, an ideal of a ring, and a minimality condition.
@article{CHEB_2018_19_1_a11,
     author = {E. V. Meshcherina and O. A. Pikhtil'kova},
     title = {The development of the concept of "artinian" for {Lie} algebras},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {167--175},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a11/}
}
TY  - JOUR
AU  - E. V. Meshcherina
AU  - O. A. Pikhtil'kova
TI  - The development of the concept of "artinian" for Lie algebras
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 167
EP  - 175
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a11/
LA  - ru
ID  - CHEB_2018_19_1_a11
ER  - 
%0 Journal Article
%A E. V. Meshcherina
%A O. A. Pikhtil'kova
%T The development of the concept of "artinian" for Lie algebras
%J Čebyševskij sbornik
%D 2018
%P 167-175
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a11/
%G ru
%F CHEB_2018_19_1_a11
E. V. Meshcherina; O. A. Pikhtil'kova. The development of the concept of "artinian" for Lie algebras. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 167-175. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a11/

[1] Lambek I., Rings and modules, Mir, M., 1971, 279 pp.

[2] Herstein I., Noncommutative rings, Mir, M., 1972, 191 pp.

[3] Mescherina E.V., “History of the development of the concept of “inner ideal””, History of Science and Engineering, 2015, no. 9, 3–7

[4] McCrimmon K., “Inner ideals in quadratic Jordan algebras”, Trans. Amer. Math. Soc., 159 (1971), 445–468 | DOI | MR | Zbl

[5] Katz J., “Isomorphisms of the lattice of inner ideals of certain quadratic Jordan algebras”, Trans. Amer. Math. Soc., 185 (1973), 309–329 | DOI | MR

[6] Bakhturin Yu. A., “Artinian special Lie algebras”, Algebra, Izd-vo MGU, M., 1982, 24–26

[7] Pikhtilkov S.A., “Artinian special Lie algebra”, Algorithmic problems of the theory of groups and semigroups, Izd-vo Tul. gos. ped. univ. im. L.N. Tolstogo, Tula, 2001, 189–194

[8] Pikhtilkov S.A., Polyakov V.M., “About locally nilpotent Artinian Lie algebras”, Chebyshevskii sbornik, 6:1 (2005), 163–169 | Zbl

[9] Pikhtilkov S.A., The structural theory of special Lie algebras, Izd-vo TGPU im. L.N. Tolstogo, Tula, 2005, 45–48

[10] Pikhtilkov S. A., Polyakov V. M., “Artinal special Lie superalgebras”, Bull. Academie de stinte a republicii Moldova. Matematica, 44:1 (2004), 116–119 | MR | Zbl

[11] Benkart G., “On inner ideals and ad-nilpotent elements of Lie algebras”, Transaction of the American Mathematical Society, 232 (1977), 61–81 | DOI | MR | Zbl

[12] Benkart G., “The Lie inner ideal structure of associative rings”, J. of Algebra, 43 (1976), 561–584 | DOI | MR | Zbl

[13] Fernandez Lopez A., Garcia E., Gomez Lozano M., “Inner ideals of finitary simple Lie algebras”, J. Lie Theory, 16 (2006), 97–114 | MR | Zbl

[14] Fernandez Lopez A., Garcia E., Gomez Lozano M., “Inner ideal structure of nearly artinian Lie algebras”, Proc. Amer. Math. Soc., 137 (2009), 1–9 | MR | Zbl

[15] Fernandez Lopez A., Garcia E., Gomez Lozano M., “An artinian theory for Lie algebras”, J. of Algebra, 319:3 (2008), 938–951 | DOI | MR | Zbl

[16] Benkart G., Fernandez Lopez A., “The inner ideal structure of associative rings revisited”, Communications in Algebra, 37 (2009), 3833–3850 | DOI | MR | Zbl

[17] Meshcherina E.V., Pichtilkov S.A., “On some properties of inner ideals of a Lie algebra”, Vestnik OGU, 2013, no. 9 (158), 110–114

[18] Olshansky A.Yu., “Infinite group with subgroups of prime orders”, Izv. AN SSSR. Ser. mat., 44:2 (1980), 309–321

[19] Beidar K.I., Zaytsev M.V., Pikhtilkov S.A., “Lie algebras with the maximality condition on abelian subalgebras”, Vestnik MGU, Ser. 1. Mat., Mekh., 2002, no. 5, 27–32

[20] Meshcherina E.V., “On the different definitions of Artinian for Lie Algebras”, Chebyshevskii sbornik, 14:3 (47) (2013), 86–91

[21] Balaba I.N., Mikhalev A.V., Pikhtilkov S.A., “The primary radical of graded $\Omega$-groups”, Fundamentalnaya i prikladnaya matematika, 12:2 (2006), 159–174

[22] Meshcherina E.V., Pikhtilkov S.A., Pikhtilkova O.A., “On the problem of A.V. Mikhalev for Liealgebras”, Izvestiya Saratovskogo Universiteta. Novaya seriya. Seriya Mathematika. Mechanika. Informatika, 2013, no. 4-2, 84–89

[23] Blagovisnaya A.N., Pikhtilkov S.A., Pikhtilkova O.A., “On the properties of the primary radical of the weakly-Artinian Lie algebra”, Chebyshevskii sbornik, 18:1, 134–142 | DOI | Zbl