Distribution of zeros of nondegenerate functions on short cuttings~II
Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 5-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain estimates from above and from below the number of zeros of functions of a special kind, as well as an estimate of the measure of the set of points in which such functions take small values. Let $f_1\left (x\right),\ ...,\ f_n\left(x\right)$ function defined on an interval $I$, $n+1$ times differentiable and Wronskian of derivatives almost everywhere (in the sense of Lebesgue measure) on $I$ different from 0. Such functions are called nondegenerate. The problem of distributing zeros of $F\left(x\right)=a_nf_n\left(x\right)+\ ...\ +a_1f_1\left(x\right)+a_0,\ a_j\in Z,\ 1\leq j\leq n$ is a generalization of many problems about the distribution of zeros of polynomials is important in the metric theory of Diophantine approximations. An interesting fact is that there is a lot in common in the distribution of roots of the function $F\left(x\right)$ and the distribution of zeros of polynomials. For example, the number of zeros of $F\left(x\right)$ on a fixed interval does not exceed $n$, as well as for polynomials — the number of zeros does not exceed the polynomial degree. Three theorems were proved: on the evaluation of the number of zeros from above, on the evaluation of the number of zeros from below, as well as an auxiliary metric theorem, which is necessary to obtain estimates from below. While obtaining lower bounds method was used for major and minor fields, who introduced V. G. Sprindzuk. Let $Q>1$ be a sufficiently large integer, and the interval $I$ has the length $Q^{-\gamma},\ 0\leq\gamma1$. Produced estimates on the top and bottom for the number of zeros of the function $F\left(x\right)$ on the interval $I$, with $\left|a_j\right|\leq Q,\ 0\leq\gamma 1$, and also indicate the dependence of this quantity from the interval $I$. When $\gamma=0$ similar results are available from A. S. Pyartli, V. G. Sprindzhuk, V. I. Bernik, V. V. Beresnevich, N. V. Budarina.
Keywords: nondegenerate functionsons, zeros of nondegenerate functionsons.
@article{CHEB_2018_19_1_a0,
     author = {V. I. Bernik and N. V. Budarina and A. V. Lunevich and H. O'Donnell},
     title = {Distribution of zeros of nondegenerate functions  on short {cuttings~II}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a0/}
}
TY  - JOUR
AU  - V. I. Bernik
AU  - N. V. Budarina
AU  - A. V. Lunevich
AU  - H. O'Donnell
TI  - Distribution of zeros of nondegenerate functions  on short cuttings~II
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 5
EP  - 14
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a0/
LA  - ru
ID  - CHEB_2018_19_1_a0
ER  - 
%0 Journal Article
%A V. I. Bernik
%A N. V. Budarina
%A A. V. Lunevich
%A H. O'Donnell
%T Distribution of zeros of nondegenerate functions  on short cuttings~II
%J Čebyševskij sbornik
%D 2018
%P 5-14
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a0/
%G ru
%F CHEB_2018_19_1_a0
V. I. Bernik; N. V. Budarina; A. V. Lunevich; H. O'Donnell. Distribution of zeros of nondegenerate functions  on short cuttings~II. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 5-14. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a0/

[1] Ibragimov I. A., Maslova N. B., “On the Expected Number of Real Zeros of Random Polynomials. II. Coefficients With Non-Zero Means”, Theory Probab. Appl., 16 (1971), 486–493 | MR

[2] Zaporozhets D. N., Ibragimov I. A., “On random surface area"”, Journal of Mathematical Sciences, 176 (2010), 190–202 | DOI

[3] Bernik V., Götze F., “Distribution of real algebraic numbers of arbitrary degree in short intervals”, Izvestiya: Mathematics, 79:1 (2015), 21–42 | DOI | Zbl

[4] Beresnevich V., “On approximation of real numbers by real algebraic numbers”, Acta Arith., 90:8 (1999), 97–112 | DOI | MR | Zbl

[5] Beresnevich V., Bernik V., “On a metrical theorem of W. Shmidt. Acta Arith”, Acta Arith., 75 (1996), 219–233 | DOI | MR | Zbl

[6] Beresnevich V. A., “Grasher type theorem for convergence on maifolds”, Acta Matth. Hung., 94:1–2 (2002), 99–130 | DOI | MR | Zbl

[7] Baker R., “Metric diophantine approximation on manifolds”, J. Lond. Math. Soc., 14 (1976), 43–48 | DOI | MR | Zbl

[8] Berink V., “On the exact order of approximation of zero by the values of integer-valued polynomials”, Acta. Arith., 53:1 (1989), 17–28 | DOI | MR

[9] Berink V., Kleinbok D., Marguli Y., “Khinchine-type theorems on manifolds: the convergence case for standart and multiplicative versions”, Jntern. Math. Res., 9 (2001), 453–486 | MR

[10] Berink V., Götze F., “Distribution of real algebraic numbers of arbitary degree in short intervals”, Jzv. Math. RAN, 79:1 (2015), 18–39 | MR

[11] Berink V., Gusakova A., Götze F., “On ponts with algebraically conjugate coordinates close to smooth curves”, Moscow Journal of Combinations and Number Theory, 6:2–3 (2016), 56–101 | MR

[12] Kleinbok D., Margulis G., “Flow on homogeneous spaces and Diophantine approximation on manifolds”, Ann. of Math., 148:2 (1998), 339–360 | DOI | MR

[13] Mahker K., “Über das Mass der Menge aller S-Zhlen”, Math. Ann., 106 (1932), 131–139 | DOI | MR

[14] Pyartly A., “Diophantine approximation on submanifolds of euclidion space”, Funk. Analis and its application, 3:4 (1969), 303–306 | DOI | MR

[15] Shmidt W., “Metrische Satze über simultane Approximationen abhangiger Grossen”, Monatsh. Math., 68 (1964), 145–166 | MR

[16] Sprindzuk V., “Achievements and problems of the theory of Diophantine approximations”, Uspekhi mat. Baur., 35:4 (1980), 3–68 | MR

[17] Sprindzuk V., Mahler problem in metric theory numbers, Eng. trans., Amer. Math. Soc., Providence, 1969 | MR

[18] Götze F., Koleda D., Zaporozhets D., “Distribution of complex algebraic numbers”, Proc. Amer. Math. Soc., 145:1 (2017), 61–71 | DOI | MR | Zbl

[19] Bernik A., Götzeb F., Kukso O., “Bad-approximable points and distribution of discriminants of the product of linear integer polynomials”, Chebyshevskii Sbornik, 8:2 (2007), 140–147 | MR | Zbl

[20] Bernik A., Götzeb F., Gusakova A., “On the distribution of points with algebraically conjugate coordinates in a neighborhood of smooth curves”, Zapiski POMI, 2016, 14–47 | MR

[21] Beresnevich V., Bernik V., Götze F., “Integral polynomials with small discriminants and resultants”, Adv. Math., 298 (2016), 393–412 | DOI | MR | Zbl

[22] Koleda D. V., “On the density function of the distribution of real algebraic numbers”, Journal de Theorie des Nombres de Bordeaux, 29 (2017), 179–200 | DOI | MR | Zbl