Some extremal problems of harmonic analysis and approximation theory
Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 140-167
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to a survey of the main results obtained in the solution of the Turán and Fejér extremal problems on the torus; the Turán, Delsarte, Bohmann, and Logan extremal problems on the Euclidean space, half-line, and hyperboloid. We also give results obtained when solving a similar problem on the optimal argument in the module of continuity in the sharp Jackson inequality in the space $L^2$ on the Euclidean space and half-line. Most of the results were obtained by the authors of the review. The survey is based on a talk made by V. I. Ivanov at the conference «6th Workshop on Fourier Analysis and Related Fields, Pecs, Hungary, 24-31 August 2017». We solve also the problem of the optimal argument on the hyperboloid. As the basic apparatus for solving extremal problems on the half-line, we use the Gauss and Markov quadrature formulae on the half-line with respect to the zeros of the eigenfunctions of the Sturm–Liouville problem. For multidimensional extremal problems we apply a reduction to one-dimensional problems by means of averaging of admissible functions over the Euclidean sphere. Extremal function is unique in all cases.
Keywords:
Fourier, Hankel, and Jacobi transforms, Turán, Fejér, Delsarte, Bohman, and Logan extremal problems, Gauss and Markov quadrature formulae.
@article{CHEB_2017_18_4_a6,
author = {D. V. Gorbachev and V. I. Ivanov and E. P. Ofitserov and O. I. Smirnov},
title = {Some extremal problems of harmonic analysis and approximation theory},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {140--167},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a6/}
}
TY - JOUR AU - D. V. Gorbachev AU - V. I. Ivanov AU - E. P. Ofitserov AU - O. I. Smirnov TI - Some extremal problems of harmonic analysis and approximation theory JO - Čebyševskij sbornik PY - 2017 SP - 140 EP - 167 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a6/ LA - ru ID - CHEB_2017_18_4_a6 ER -
%0 Journal Article %A D. V. Gorbachev %A V. I. Ivanov %A E. P. Ofitserov %A O. I. Smirnov %T Some extremal problems of harmonic analysis and approximation theory %J Čebyševskij sbornik %D 2017 %P 140-167 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a6/ %G ru %F CHEB_2017_18_4_a6
D. V. Gorbachev; V. I. Ivanov; E. P. Ofitserov; O. I. Smirnov. Some extremal problems of harmonic analysis and approximation theory. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 140-167. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a6/