Some extremal problems of harmonic analysis and approximation theory
Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 140-167

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to a survey of the main results obtained in the solution of the Turán and Fejér extremal problems on the torus; the Turán, Delsarte, Bohmann, and Logan extremal problems on the Euclidean space, half-line, and hyperboloid. We also give results obtained when solving a similar problem on the optimal argument in the module of continuity in the sharp Jackson inequality in the space $L^2$ on the Euclidean space and half-line. Most of the results were obtained by the authors of the review. The survey is based on a talk made by V. I. Ivanov at the conference «6th Workshop on Fourier Analysis and Related Fields, Pecs, Hungary, 24-31 August 2017». We solve also the problem of the optimal argument on the hyperboloid. As the basic apparatus for solving extremal problems on the half-line, we use the Gauss and Markov quadrature formulae on the half-line with respect to the zeros of the eigenfunctions of the Sturm–Liouville problem. For multidimensional extremal problems we apply a reduction to one-dimensional problems by means of averaging of admissible functions over the Euclidean sphere. Extremal function is unique in all cases.
Keywords: Fourier, Hankel, and Jacobi transforms, Turán, Fejér, Delsarte, Bohman, and Logan extremal problems, Gauss and Markov quadrature formulae.
@article{CHEB_2017_18_4_a6,
     author = {D. V. Gorbachev and V. I. Ivanov and E. P. Ofitserov and O. I. Smirnov},
     title = {Some extremal problems of harmonic analysis and approximation theory},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {140--167},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a6/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - V. I. Ivanov
AU  - E. P. Ofitserov
AU  - O. I. Smirnov
TI  - Some extremal problems of harmonic analysis and approximation theory
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 140
EP  - 167
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a6/
LA  - ru
ID  - CHEB_2017_18_4_a6
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A V. I. Ivanov
%A E. P. Ofitserov
%A O. I. Smirnov
%T Some extremal problems of harmonic analysis and approximation theory
%J Čebyševskij sbornik
%D 2017
%P 140-167
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a6/
%G ru
%F CHEB_2017_18_4_a6
D. V. Gorbachev; V. I. Ivanov; E. P. Ofitserov; O. I. Smirnov. Some extremal problems of harmonic analysis and approximation theory. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 140-167. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a6/