Some extremal problems of harmonic analysis and approximation theory
Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 140-167.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to a survey of the main results obtained in the solution of the Turán and Fejér extremal problems on the torus; the Turán, Delsarte, Bohmann, and Logan extremal problems on the Euclidean space, half-line, and hyperboloid. We also give results obtained when solving a similar problem on the optimal argument in the module of continuity in the sharp Jackson inequality in the space $L^2$ on the Euclidean space and half-line. Most of the results were obtained by the authors of the review. The survey is based on a talk made by V. I. Ivanov at the conference «6th Workshop on Fourier Analysis and Related Fields, Pecs, Hungary, 24-31 August 2017». We solve also the problem of the optimal argument on the hyperboloid. As the basic apparatus for solving extremal problems on the half-line, we use the Gauss and Markov quadrature formulae on the half-line with respect to the zeros of the eigenfunctions of the Sturm–Liouville problem. For multidimensional extremal problems we apply a reduction to one-dimensional problems by means of averaging of admissible functions over the Euclidean sphere. Extremal function is unique in all cases.
Keywords: Fourier, Hankel, and Jacobi transforms, Turán, Fejér, Delsarte, Bohman, and Logan extremal problems, Gauss and Markov quadrature formulae.
@article{CHEB_2017_18_4_a6,
     author = {D. V. Gorbachev and V. I. Ivanov and E. P. Ofitserov and O. I. Smirnov},
     title = {Some extremal problems of harmonic analysis and approximation theory},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {140--167},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a6/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - V. I. Ivanov
AU  - E. P. Ofitserov
AU  - O. I. Smirnov
TI  - Some extremal problems of harmonic analysis and approximation theory
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 140
EP  - 167
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a6/
LA  - ru
ID  - CHEB_2017_18_4_a6
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A V. I. Ivanov
%A E. P. Ofitserov
%A O. I. Smirnov
%T Some extremal problems of harmonic analysis and approximation theory
%J Čebyševskij sbornik
%D 2017
%P 140-167
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a6/
%G ru
%F CHEB_2017_18_4_a6
D. V. Gorbachev; V. I. Ivanov; E. P. Ofitserov; O. I. Smirnov. Some extremal problems of harmonic analysis and approximation theory. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 140-167. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a6/

[1] Stechkin S. B., “An extremal problem for trigonometric series with nonnegative coefficients”, Acta Math. Acad. Sci. Hung., 23:3–4 (1972), 289–291 | MR | Zbl

[2] Gorbachev D. V., Manoshina A. S., “Turán Extremal Problem for Periodic Functions with Small Support and Its Applications”, Math. Notes, 76:5 (2004), 640–652 | DOI | DOI | MR | Zbl

[3] Fejér L., “Über trigonometrische Polynome”, J. Angew. Math., 146 (1915), 53–82 | MR | Zbl

[4] Ivanov V. I., Rudomazina Yu. D., “About Turán problem for periodic functions with nonnegative Fourier coefficients and small support”, Math. Notes, 77:6 (2005), 870–875 | DOI | DOI | MR | Zbl

[5] Ivanov V. I., Gorbachev D. V., Rudomazina Yu. D., “Some extremal problems for periodic functions with conditions on their values and Fourier coefficients”, Proc. Steklov Inst. Math., 2005, no. 2, suppl., 139–159 | MR | Zbl

[6] Ivanov V. I., “On the Turán and Delsarte problems for periodic positive definite functions”, Math. Notes, 80:6 (2006), 875–880 | DOI | DOI | MR | Zbl

[7] Ivanov V. I., Ivanov A. V. Turán problems for periodic positive definite functions, Annales Univ. Sci. Budapest, Sect. Comp., 33 (2010), 219–237 | MR | Zbl

[8] Andreev N. N., “An extremal problem for periodic functions with small support”, Moscow Univ. Math. Bull., 52 (1997), 29–32 | MR | Zbl

[9] Gorbachev D. V., “An extremal problem for periodic functions with supports in the ball”, Math. Notes, 69:3 (2001), 313–319 | DOI | DOI | MR | Zbl

[10] Siegel C. L., “Über Gitterpunkte in konvexen Körpern und damit zusammenhängendes Extremal problem”, Acta Math. 1935, 65:1, 307–323 | MR

[11] Boas R. P., Kac M., “Inequalities for Fourier Transforms of positive functions”, Duke Math. J., 12 (1945), 189–206 | DOI | MR | Zbl

[12] Kolountzakis M. N., Révész Sz. Gy., “On a problem of Turán about positive definite functions”, Proc. Amer. Math. Soc, 131 (2003), 3423–3430 | DOI | MR | Zbl

[13] Arestov V. V., Berdysheva E. E., “Turán's problem for positive definite functions with supports in a hexagon”, Proc. Steklov Inst. Math., 2001, no. 1, suppl., 20–29 | MR

[14] Arestov V. V., Berdysheva E. E., “The Turán problem for a class of polytopes”, East J. Approx, 8:3 (2002), 381–388 | MR | Zbl

[15] Kolountzakis M. N., Révész Sz. Gy., “Turán's extremal problem for positive definite functions on groups”, J. London Math. Soc, 74 (2006), 475–496 | DOI | MR | Zbl

[16] Révész Sz. Gy., “Turán's extremal problem on locally compact abelian groups”, Anal. Math, 37:1 (2011), 15–50 | DOI | MR

[17] Viazovska M. S., “The sphere packing problem in dimension 8”, Annals of Math, 185:3 (2017), 991–1015 | DOI | MR | Zbl

[18] Cohn H., Kumar A., Miller S. D., Radchenko D., Viazovska M., “The sphere packing problem in dimension 24”, Annals of Math, 185:3 (2017), 1017–1033 | DOI | MR | Zbl

[19] Gorbachev D. V., “An extremal problem for an entire functions of exponential spherical type related to the Levenshtein estimate for the sphere packing density in $\mathbb{R}^{n}$”, Izv. Tul. Gos. Univ., Ser. Mat. Mec. Inf., 6:1 (2000), 71–78 (in Russian)

[20] Cohn H., “New upper bounds on sphere packings II”, Geom. Topol, 6 (2002), 329–353 | DOI | MR | Zbl

[21] Levenshtein V. I., “Bounds for packings in n-dimensional Euclidean space”, Soviet Math. Dokl., 20 (1979), 417–421 | Zbl

[22] Yudin V. A., “Packings of balls in Euclidean space, and extremal problems for trigonometric polynomials”, Discrete Math. Appl., 1:1 (1989), 69–72 | MR | Zbl

[23] Yudin V. A., “The multidimensional Jackson theorem”, Math. Notes, 20:3 (1976), 801–804 | DOI | MR | Zbl

[24] Ivanov V. I., “Approximation of functions in spaces $L_p$”, Math. Notes, 56:2 (1994), 770–789 | DOI | MR | Zbl

[25] Bohman H., “Approximate Fourier analysis of distribution functions”, Ark. Mat., 4 (1960), 99–157 | DOI | MR

[26] Ehm W., Gneiting T., Richards D., “Convolution roots of radial positive definite functions with compact support”, Trans. Amer. Math. Soc., 356 (2004), 4655–4685 | DOI | MR | Zbl

[27] Logan B. F., “Extremal problems for positive-definite bandlimited functions. I. Eventually positive functions with zero integral”, SIAM J. Math. Anal., 14:2 (1983), 249–252 | DOI | MR | Zbl

[28] Logan B. F., “Extremal problems for positive-definite bandlimited functions II. Eventually negative functions”, SIAM J. Math. Anal., 14:2 (1983), 253–257 | DOI | MR | Zbl

[29] Gorbachev D. V., “Extremum problems for entire functions of exponential spherical type”, Math. Notes, 68:2 (2000), 159–166 | DOI | DOI | MR | Zbl

[30] Chernykh N. I., “On Jackson's inequality in $L_2$”, Proc. Steklov Inst. Math., 88 (1967), 75–78 | MR | Zbl | Zbl

[31] Yudin V. A., “Multidimensional Jackson theorem in $L_2$”, Math. Notes, 29:2 (1981), 158–162 | Zbl

[32] Berdysheva E. E., “Two related extremal problems for entire functions of several variables”, Math. Notes, 66:3 (1999), 271–282 | DOI | DOI | MR | Zbl

[33] Arestov V. V., Chernykh N. I., “On the $L_2$-approximation of periodic functions by trigonometric polynomials”, Approximation and functions spaces, Proc. intern. conf. (Gdansk, 1979), North-Holland, Amsterdam, 1981, 25–43 | MR

[34] Ivanov A. V., Ivanov V. I., “Optimal arguments in Jackson's inequality in the power-weighted space $L_2(\mathbb{R}^d)$”, Math. Notes, 94:3 (2013), 320–329 | DOI | DOI | MR | Zbl

[35] Ivanov A. V., “Some extremal problem for entire functions in weighted spaces”, Izv. Tul. Gos. Univ., Estestv. Nauki, 2010, no. 1, 26–44 (in Russian)

[36] Ivanov A. V., “Logan problem for entire functions of several variables and Jackson constants in weighted spaces”, Izv. Tul. Gos. Univ., Estestv. Nauki, 2011, no. 2, 29–58 (in Russian)

[37] Gorbachev D. V., Ivanov V. I., “Boman extremal problem for Dunkl transform”, Proc. Steklov Inst. Math., 297:1, suppl. (2017), 88–96 | DOI | MR

[38] Platonov S. S., “Bessel harmonic analysis and approximation of functions on the half-line”, Izvestiya: Mathematics, 71:5 (2007), 1001–1048 | DOI | DOI | MR | Zbl

[39] “Boman extremal problem for Fourier–Hankel transform”, Izv. Tul. Gos. Univ., Estestv. Nauki, 2014, no. 4, 5–10 (in Russian)

[40] Gorbachev D. V., Selected Problems in the Theory of Functions and Approximation Theory: Their Applications, Grif and K, Tula, 2005, 192 pp. (in Russian)

[41] Frappier C., Olivier P., “A quadrature formula involving zeros of Bessel functions”, Math. Comp., 60 (1993), 303–316 | DOI | MR | Zbl

[42] Grozev G. R., Rahman Q. I., “A quadrature formula with zeros of Bessel functions as nodes”, Math. Comp., 64 (1995), 715–725 | DOI | MR | Zbl

[43] Ghanem R. B., Frappier C., “Explicit quadrature formulae for entire functions of exponential type”, J. Approx. Theory, 92:2 (1998), 267–279 | DOI | MR | Zbl

[44] Gorbachev D. V., Ivanov V. I., “Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm–Liouville problem, which are exact for entire functions of exponential type”, Sbornik: Math., 206:8 (2015), 1087–1122 | DOI | DOI | MR | Zbl

[45] Flensted-Jensen M., Koornwinder T. H., “The convolution structure for Jacobi function expansions”, Ark. Mat., 11 (1973), 245–262 | DOI | MR | Zbl

[46] Flensted-Jensen M., Koornwinder T. H., “Jacobi functions: The addition formula and the positivity of dual convolution structure”, Ark. Mat., 17 (1979), 139–151 | DOI | MR | Zbl

[47] Gorbachev D. V., Ivanov V. I., “Turán's and Fejér's extremal problems for Jacobi transform”, Anal. Math., 2017 (to appear) | MR

[48] Gorbachev D. V., Ivanov V. I., Smirnov O. I., “The Delsarte Extremal Problem for the Jacobi Transform”, Math. Notes, 100:5 (2016), 677–686 | DOI | MR | Zbl

[49] Gorbachev D. V., Ivanov V. I., “Boman extremal problem for Jacobi transform”, Trudy Inst. Mat. Mekh. UrO RAN, 22, no. 4, 2016, 126–135 (in Russian)

[50] Gorbachev D. V., Ivanov V. I., “Some extremal problems for Fourier transform on hyperboloid”, Math. Notes, 102:4 (2017), 480–491 | DOI | MR | Zbl

[51] Gorbachev D. V., Ivanov V. I., Veprintsev R. A., “Optimal Argument in Sharp Jackson's inequality in the Space $L_2$ with the Hyperbolic Weight”, Math. Notes, 96:6 (2014), 338–348 | MR

[52] Veprintsev R. A., “Approximation in $L_2$ by partial integrals of the multidimensional Jacobi transform”, Math. Notes, 97:6 (2015), 815–831 | DOI | Zbl

[53] Gorbachev D. V., Ivanov V. I., “Approximation in $L_2$ by partial integrals of the Fourier transform over the eigenfunctions of the Sturm–Liouville operator”, Math. Notes, 100:4 (2016), 540–549 | DOI | DOI | MR | Zbl

[54] Gorbachev D. V., Ivanov V. I., Veprintsev R. A., “Approximation in $L_2$ by partial integrals of the multidimensional Fourier transform over the eigenfunctions of the Sturm–Liouville operator”, Trudy Inst. Mat. Mekh. UrO RAN, 22, no. 4, 2016, 136–152 (in Russian)

[55] Gorbachev D. V., Ivanov V. I., “Some extremal problems for the Fourier transform over the eigenfunctions of the Sturm–Liouville operator”, Chebyshevskii sbornik, 18:2 (2017), 34–53 (in Russian) | DOI | Zbl

[56] Vilenkin N. J., Special Functions and the Theory of Group Representations, Translations of mathematical monographs, 22, Amer. Math. Soc., Providence, RI, 1968, 613 pp. | DOI | MR | Zbl

[57] Lizorkin P. I., “Direct and inverse theorems of approximation theory for functions on the Lobachevsky space”, Proc. Steklov Inst. Math., 194 (1992), 125–151 | MR | Zbl

[58] Gorbachev D. V., Piskorsh M. S., “Sharp Jackson inequality in $L_2$ on hyperboloid”, Izv. Tul. Gos. Univ., Ser. Mat. Mec. Inf., 4:1 (1998), 54–58 (in Russian)

[59] Popov V. Yu., “Sharp Jackson–Stechkin inequality in $L_2$ on the hyperboloid”, Trudy Inst. Mat. Mekh. UrO RAN, 5, no. 4, 1998, 254–266 (in Russian) | Zbl

[60] Petrova I. V., “Approximation on the hyperboloid in $L_2$-metric”, Proc. Steklov Inst. Math., 194 (1992), 229–243 | MR | Zbl