Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2017_18_4_a5, author = {I. M. Burkin}, title = {About one approach to construction of chaotic chameleons systems}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {128--139}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a5/} }
I. M. Burkin. About one approach to construction of chaotic chameleons systems. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 128-139. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a5/
[1] Lorenz E. N., “Deterministic nonperiodic flow”, J. Atmos. Sci., 20 (1963), 65–75
[2] Rössler O. E., “An Equation for Continuous Chaos”, Physics Letters A, 57:5 (1976), 397–398 | DOI | MR | Zbl
[3] Chua L. O., “A zoo of Strange Attractors from the Canonical Chua's Circuits”, Proc. Of the IEEE 35th Midwest Symp. on Circuits and Systems (Cat. No. 92CH3099-9), v. 2, Washington, 1992, 916–926 | DOI
[4] Leonov G. A., Kuznetsov N. V., Vagaitsev V. I., “Localization of hidden Chua's attractors”, Phys. Lett. A, 375 (2011), 2230–2233 | DOI | MR | Zbl
[5] Sharma P. R., Shrimali M. D., Prasad A., Kuznetsov N. V., Leonov G. A., “Control of multistability in hidden attractors”, Eur Phys J Spec Top., 224:8 (2015), 1485–1491 | DOI | MR
[6] Sharma P. R., Shrimali M. D., Prasad A., Kuznetsov N. V., Leonov G. A., “Controlling dynamics of hidden attractors”, Int. J. Bifurcation and Chaos, 25:4 (2015), 1550061 | DOI | MR | Zbl
[7] Pham V.-T., Volos C., Jafari S., Wei Z., Wang X., “Constructing a novel no-equilibrium chaotic system”, Int J Bifurcation and Chaos, 24:5 (2014), 1450073 | DOI | MR | Zbl
[8] Tahir F. R., Jafari S., Pham V.-T., Volos C., Wang X., “A novel no-equilibrium chaotic system with multiwing butterfly attractors”, Int J Bifurcation and Chaos, 25:4 (2015), 1550056 | DOI | MR
[9] Jafari S, Pham V.-T., Kapitaniak T., “Multiscroll chaotic sea obtained from a simple 3d system without equilibrium”, Int J Bifurcation and Chaos, 26:2 (2016), 1650031 | DOI | MR | Zbl
[10] Molaie M., Jafari S., Sprott J. C., Golpayegani S. M. R. H., “Simple chaotic flows with one stable equilibrium”, Int J Bifurcation and Chaos, 23:11 (2013), 1350188 | DOI | MR | Zbl
[11] Kingni S. T., Simo H., Woafo P., “Three-dimensional chaotic autonomous system with only one stable equilibrium: analysis, circuit design, parameter estimation, control, synchroni-zation and its fractional-order form”, Eur Phys J Plus, 129:5 (2014), 1–16 | DOI
[12] Pham V.-T., Jafari S., Volos C., Giakoumis A., Vaidyanathan S., Kapitaniak T., “A chaotic system with equilibria located on the rounded square loop and its circuit implementa-tion”, IEEE Trans Circuits Syst II, 63:9 (2016), 878–882 | DOI | MR
[13] Pham V.-T., Jafari S., Volos C., “A novel chaotic system with heart-shaped equilibrium and its circuital implementation”, Optik, 131 (2017), 343–349 | DOI
[14] Rajagopal K., Karthikeyan A., Duraisamy P., “Hyperchaotic chameleon: fractional order FPGA implementation”, Complexity Volume, 2017 https://www.hindawi.com/journals/complexity/aip/8979408/ | MR
[15] Rajagopal K., Akgul A., Jafari S., Karthikeyan A., Koyuncu I., “Chaotic chameleon: Dynamic analyses, circuit implementation, FPGA design and fractional-order form with basic analyses”, Chaos, Solitons and Fractals, 103 (2017), 476–487 | DOI | MR
[16] Burkin I. M., Nguen N. K., “Analytical-Numerical Methods of Finding Hidden Oscillations in Multidimensional Dynamical Systems”, Diff. Equations, 50:13 (2014), 1695–1717 | Zbl
[17] Sprott J. C., “A new chaotic jerk circuit”, IEEE Trans. Circuits Syst.-II: Expr. Briefs, 58 (2011), 240–243 | DOI
[18] Sprott J. C., Fatma Y. D., “Simple Chaotic Hyperjerk System”, Int. J. Bifurcation and Chaos, 26:11 (2016), 1650189 | DOI | MR
[19] Burkin I. M., “The buffer phenomenon in multidimensional dynamical systems”, Diff. Equations, 38:5 (2002), 615–625 | Zbl
[20] Burkin I. M., “Hidden attractors of some multistable systems with infinite number of equlibria”, Chebyshevskiy sbornik, 18:2 (62) (2017), 18–33 | DOI
[21] Leonov G. A., Kuznetsov N. V., Mokaev T. N., “Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion”, The European Physical Journal Special Topics, Multistability: Uncovering Hidden Attractors, 224:8 (2015), 1421–1458 | DOI | MR