Upper and lower estimates of the number of algebraic points in short intervals
Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 116-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

The distribution of algebraic numbers is quite complicated. Probably this is why they are rarely used as dense sets. Nevertheless, A. Baker and W. Schmidt proved in 1970 that the distribution of algebraic numbers still have some kind of uniformity on long intervals, which they called regularity. Recently many works have appeared addressing the problems concerning the lengths of the intervals on which real algebraic numbers have regularity property. It was discovered that for any integer $Q > 1$ there are intervals of length $0.5 Q^{-1}$, which don't contain algebraic numbers of any degree $n$ and of height $H(\alpha) \le Q$. At the same time it's possible to find such $c_0 = c_0(n)$ that for any $c > c_0$ algebraic numbers on any interval of length exceeding $c Q^{-1}$ have regularity property. Such "friendly"  to algebraic numbers intervals are intervals free of rational numbers with small denominators and algebraic numbers of small degree and height. In order to find algebraic numbers we build integral polynomials with small values on an interval and large height using Minkowski's linear forms theorem. It turns out that for "most"  points $x$ of an interval these polynomials have similar and nice characteristics (degree, height, module of polynomial value at point $x$). These characteristics are sufficient for building algebraic numbers on an interval. In this paper we prove existence of algebraic numbers of high degree on "very short" intervals.
Keywords: algebraic number, Diophantine approximation, regular systems of points, Minkowski's linears form theorem.
@article{CHEB_2017_18_4_a4,
     author = {V. I. Bernik and A. G. Gusakova and A. S. Kudin},
     title = {Upper and lower estimates of the number of algebraic points in short intervals},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {116--127},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a4/}
}
TY  - JOUR
AU  - V. I. Bernik
AU  - A. G. Gusakova
AU  - A. S. Kudin
TI  - Upper and lower estimates of the number of algebraic points in short intervals
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 116
EP  - 127
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a4/
LA  - ru
ID  - CHEB_2017_18_4_a4
ER  - 
%0 Journal Article
%A V. I. Bernik
%A A. G. Gusakova
%A A. S. Kudin
%T Upper and lower estimates of the number of algebraic points in short intervals
%J Čebyševskij sbornik
%D 2017
%P 116-127
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a4/
%G ru
%F CHEB_2017_18_4_a4
V. I. Bernik; A. G. Gusakova; A. S. Kudin. Upper and lower estimates of the number of algebraic points in short intervals. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 116-127. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a4/

[1] Weyl H., “Über die Gleichverteilung von Zahlen mod. Eins”, Mathematische Annalen, 77 (1916), 313–352 | DOI | MR | Zbl

[2] Baker A., Schmidt W. M., “Diophantine approximation and {H}ausdorff dimension”, Proc. London Math. Soc. (3), 21 (1970), 1–11 | DOI | MR | Zbl

[3] Khintchine A., “Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen”, Mathematische Annalen, 92 (1924), 115–125 | DOI | MR | Zbl

[4] Bernik V. I., “The exact order of approximating zero by values of integral polynomials”, Acta Arith., 53:1 (1989), 17–28 | DOI | MR | Zbl

[5] Beresnevich V. V., “On approximation of real numbers by real algebraic numbers”, Acta Arith., 50:2 (1999), 97–112 | DOI | MR

[6] Beresnevich V. V., “A Groshev type theorem for convergence on manifolds”, Acta Math. Hungarica, 94:1–2 (2002), 99–130 | DOI | MR | Zbl

[7] Bernik V. I., Kleinbock D., Margulis G. A., “Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions”, Internat. Math. Res. Notices, 2001, no. 9, 453–486 | DOI | MR | Zbl

[8] Beresnevich V. V., Bernik V. I., Kleinbock D., Margulis G. A., “Metric Diophantine approximation: The Khintchine-Groshev theorem for nondegenerate manifolds”, Mosc. Math. J., 2:2 (2002), 203–225 | DOI | MR | Zbl

[9] Bernik V. I., Vasilyev D. V., “A Khinchine-type theorem for integer-valued polynomials of a complex variable”, Proc. Inst. Math., 3 (1999), 10–20 | MR | Zbl

[10] Beresnevich V. V., Bernik V. I., Kovalevskaya E. I., “Metric theorems on the approximation of $p$-adic numbers”, J. Number Theory, 111:1 (2005), 33–56 | DOI | MR | Zbl

[11] Bernik V. I., Budarina N. V., Dickinson D., “A divergent Khintchine theorem in the real, complex, and $p$-adic fields”, Lith. Math. J., 48:2 (2008), 158–173 | DOI | MR | Zbl

[12] Bernik V. I., Budarina N. V., Dickinson D., “Simultaneous Diophantine approximation in the real, complex, and $p$-adic fields”, Math. Proc. Cambridge Phil. Soc., 149:2 (2010), 193–216 | DOI | MR | Zbl

[13] Kuipers L., Niederreiter H., Uniform distribution of sequences, Wiley, New York, 1974 | MR | Zbl

[14] Bernik V. I., Dodson M. M., Metric Diophantine Approximation on Manifolds, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[15] Bugeaud Y., Approximation by Algebraic Numbers, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2004 | MR | Zbl

[16] Bernik V. I., Götze F., “Distribution of real algebraic numbers of arbitrary degree in short intervals”, Izvestiya: Mathematics, 79:1 (2015), 18–39 | DOI | MR | Zbl

[17] Kaliada D., “Distribution of real algebraic numbers of a given degree”, Dokl. Nats. Akad. Nauk Belarusi, 56:3 (2012), 28–33 | MR

[18] Bernik V. I., Götze F., Gusakova A. G., “On points with algebraically conjugate coordinates close to smooth curves”, Moscow J. of Comb. and Numb. Theor., 6:2–3 (2016), 57–100 | MR

[19] Bernik V. I., “Application of the {H}ausdorff dimension in the theory of Diophantine approximations”, Acta Arith., 42:3 (1983), 219–253 | DOI | MR | Zbl

[20] Götze F., Gusakova A., “On algebraic integers in short intervals near smooth curves”, Acta Arith., 60:2 (2016), 219–253 | MR

[21] Sprindzhuk V. G., “A proof of Mahler's conjecture on the measure of the set of $S$-numbers”, Izv. Akad. Nauk SSSR Ser. Mat., 29:2 (1965), 379–436 | MR | Zbl

[22] Sprindzhuk V. G., Mahler's Problem in Metric Number Theory, Nauka i Tehnika, Minsk, 1967 | MR | Zbl

[23] Cassels J. W. S., An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics, 45, Cambridge University Press, Cambridge, 1957 | MR | Zbl

[24] Budarina N. V., Götze F., “Distance between Conjugate Algebraic Numbers in Clusters”, Mat. Zametki, 94:5 (2013), 780–783 | DOI | MR | Zbl