Algebraic lattice in a metric space lattices
Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 326-338.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we give a new General definition of an algebraic lattice. It is proved that any rational transformation of algebraic lattices is again an algebraic lattice. It is shown that the reciprocal lattice to algebraic lattices will also be an algebraic lattice, corresponding to a purely-real algebraic field $F_s$ over the rationals $\mathbb{Q}$. Following B. F. Skubenko, we study the fundamental system of pure-real algebraic fields $F_s$ over the rationals $\mathbb{Q}$. Shows the relationship between fundamental systems of algebraic numbers and algebraic lattices. We prove estimates for the norms of transition matrices from an arbitrary nondegenerate matrix for approximating rational matrix. Using the Lemma about the estimation of the norm of the matrix of transition and inverse transition matrices, linking an arbitrary non-degenerate matrix and a nondegenerate approximating the rational matrix, it is shown that the set of algebraic lattices is everywhere dense in a metric space lattices. The theorem is a special case of a more General theorem that for any lattice $\Lambda\in PR_s$ the set of all rational lattices associated with a lattice $\Lambda$ is everywhere dense in $PR_s$. The analogue of this theorem is the assertion that for an arbitrary point of the General clause of $\mathbb{R}^s$, the corresponding $s$-dimensional rational arithmetic space is everywhere dense in $s$-dimensional real arithmetical space $\mathbb{R}^s$.
Keywords: algebraic lattices, a metric space lattices.
@article{CHEB_2017_18_4_a18,
     author = {E. N. Smirnova and O. A. Pikhtilkova and N. N. Dobrovol'skii and N. M. Dobrovol'skii},
     title = {Algebraic lattice in a metric space lattices},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {326--338},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a18/}
}
TY  - JOUR
AU  - E. N. Smirnova
AU  - O. A. Pikhtilkova
AU  - N. N. Dobrovol'skii
AU  - N. M. Dobrovol'skii
TI  - Algebraic lattice in a metric space lattices
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 326
EP  - 338
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a18/
LA  - ru
ID  - CHEB_2017_18_4_a18
ER  - 
%0 Journal Article
%A E. N. Smirnova
%A O. A. Pikhtilkova
%A N. N. Dobrovol'skii
%A N. M. Dobrovol'skii
%T Algebraic lattice in a metric space lattices
%J Čebyševskij sbornik
%D 2017
%P 326-338
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a18/
%G ru
%F CHEB_2017_18_4_a18
E. N. Smirnova; O. A. Pikhtilkova; N. N. Dobrovol'skii; N. M. Dobrovol'skii. Algebraic lattice in a metric space lattices. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 326-338. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a18/

[1] Akramov U.A., “The isolation theorem for forms corresponding to purely real algebraic fields”, Analiticheskaya teoriya chisel i teoriya funktsij. 10, Zap. nauchn. sem. LOMI, 185, 1990, 5–12

[2] Vejl' G., Algebraic number theory, Gosudarstvennoe izdatel'stvo inostrannoj literatury, M., 1947, 226 pp.

[3] Delone B. N., Faddeev D. K., “Theory of irrationalities of the third degree”, Proceedings of the Steklov Institute of Mathematics, 11 (1940), 3–340

[4] Dobrovol'skaya L. P., Dobrovol'skij M. N., Dobrovol'skij N. M., Dobrovol'skij N. N., “Hyperbolic zeta functions of grids and grids and calculation of optimal coefficients”, Chebyshevskij sbornik, 13:4(44) (2012), 4–107

[5] Dobrovol'skij M. N., Multidimensional number-theoretic grids and grids and their applications, Izdatel'stvo tul'skogo gosudarstvennogo pedagogicheskogo universiteta im. L. N. Tolstogo, Tula, 2005

[6] Dobrovol'skij N.M., Rebrova I. Yu., Roshhenya A.L., “Continuity of the hyperbolic zeta function of lattices”, Matematicheskie zametki (Mathematical Notes), 63:4 (1998), 522–526 | DOI

[7] Kassels D., Introduction to the geometry of numbers, Mir, M., 1965, 422 pp.

[8] Korobov N. M., Numerical-numerical methods in approximate analysis, 2nd ed., MTSNMO, M., 2004

[9] Rebrova I. Yu., “The continuity of the hyperbolic zeta function of the lattices”, Abstracts of the report of the III International Conference “Contemporary problems of number theory”, Tula, 1996, 119

[10] Rebrova I. Yu., “The continuity of the generalized hyperbolic zeta lattice function and its analytic continuation”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, 4:3 (1998), 99–108 | Zbl

[11] Rebrova I. Yu., The lattice space and the functions on it, Ph.D. Thesis, Moscow State Pedagogical University, M., 1999

[12] Skubenko B. F., “The isolation theorem for decomposable forms of purely real algebraic fields of degree $n\ge 3$”, Analiticheskaya teoriya chisel i teoriya funktsij. 4, Zap. nauchn. sem. LOMI, 112, 1981, 167–171 | Zbl

[13] Skubenko B. F., “Simultaneous approximation of algebraic irrationalities”, J. Soviet Math., 26:3 (1984), 1922–1930 | DOI | MR | Zbl | Zbl

[14] Skubenko B. F., “On the product of $n$ linear forms of $n$ variables”, Trudy MIAN SSSR, 158, 1981, 175–179 | Zbl

[15] Skubenko B. F., “Cyclic sets of points and lattices”, Analiticheskaya teoriya chisel i teoriya funktsij. 8, Zap. nauchn. sem. LOMI, 1987, 151–158

[16] Skubenko B. F., “The minima of a decomposable cubic form in three variables”, Analiticheskaya teoriya chisel i teoriya funktsij. 9, Zap. nauchn. sem. LOMI, 168, 1988, 125–139 | Zbl

[17] Skubenko B. F., “Minima of decomposable forms of degree $n$ of $n$ variables for $n\ge 3$”, Modulyarnye funktsii i kvadratichnye formy. 1, Zap. nauchn. sem. LOMI, 183, 1990, 142–154

[18] Trikolich E. V., Yushina E. I., “Chain fractions for quadratic irrationalities from the field $\mathbb Q(\sqrt 5)$”, Chebyshevskij sbornik, 10:1 (2009), 77–94

[19] Frolov K. K., “Estimates from above of the error of quadrature formulas on function classes”, DAN SSSR, 231:4 (1976), 818–821 | Zbl

[20] Frolov K. K., Quadrature formulas on function classes, Ph.D. Thesis, Computing Center of the Russian Academy of Sciences of the USSR, M., 1979

[21] Shmeleva T. S., “The continuity of the hyperbolic lattice parameter”, Izvestiya Tul'skogo gosudarstvennogo universiteta. Estestvennye nauki, 2009, no. 3, 92–100

[22] Shmeleva T. S., “On the continuity of the hyperbolic parameter of lattices”, Algebra and Number Theory: Modern Problems and Applications, dedicated to the memory of Professor Anatoly Alekseevich Karatsuba, materials of the VII International Conference, Tula, 2010, 202–206

[23] Shmeleva T. S., “Approximation of lattices”, Materials of the XII International Conference Algebra and Number Theory: Contemporary Problems and Applications, dedicated to the eightieth birthday of Professor Viktor Nikolaevich Latyshev, Tula, 2014, 311–314

[24] Shmeleva T. S., “Approximation of gratings and their application”, Materials of the XIII International Conference Algebra, Number Theory and Discrete Geometry: Modern Problems and Applications, dedicated to the eightieth anniversary of the birth of Professor Sergey Sergeevich Ryshkov, Tula, 2015, 384–386 | Zbl