New properties of almost nilpotent varieties with integer exponents
Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 306-325.

Voir la notice de l'article provenant de la source Math-Net.Ru

Almost nilpotent varieties of nonassociative algebras over a field of zero characteristic in the class of all algebras satisfying identical relation $x(yz) \equiv 0$ are studied. Earlier in this class of algebras for each natural number $m \ge 2$ the algebra $A_m$ generating the almost nilpotent variety $var(A_m)$ of exponential growth with exponent of $m$ was defined. In the paper numerical characteristics of varieties $var(A_m)$ are studied. To this end in the relatively free algebras of the varieties $var(A_m)$ the spaces of multilinear elements corresponding to left normed polynomials with fixed variable on the first position are considered. Each space is considered as completely reducible module of the symmetric group and multiplicities in the decomposition of the corresponding cocharacter into sum of irreducible characters are calculated. The multiplicities corresponding to the multilinear parts of relatively free algebras of the variety $var(A_m)$ are defined by the calculated values. Colengths of the varieties $var(A_m)$, $m \ge 2$ are obtained using this method. For each $m \ge 2$ the set of identical relations that defines the variety $var(A_m)$ is obtained.
Keywords: polynomial identity, linear algebra, almost nilpotent variety, exponential growth.
@article{CHEB_2017_18_4_a17,
     author = {N. P. Panov},
     title = {New properties of almost nilpotent varieties with integer exponents},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {306--325},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a17/}
}
TY  - JOUR
AU  - N. P. Panov
TI  - New properties of almost nilpotent varieties with integer exponents
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 306
EP  - 325
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a17/
LA  - ru
ID  - CHEB_2017_18_4_a17
ER  - 
%0 Journal Article
%A N. P. Panov
%T New properties of almost nilpotent varieties with integer exponents
%J Čebyševskij sbornik
%D 2017
%P 306-325
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a17/
%G ru
%F CHEB_2017_18_4_a17
N. P. Panov. New properties of almost nilpotent varieties with integer exponents. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 306-325. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a17/

[1] Giambruno A., Zaicev M., Polynomial Identities and Asymptotic Methods, AMS Mathematical Surveys and Monographs, 122, 2005, 352 pp. | DOI | MR | Zbl

[2] Bahturin Yu. A., Identical relations in Lie algebras, VNU Science Press, Utrecht, 1987 | MR | Zbl

[3] Drensky V., Free Algebras and PI-Algebras. Graduate Course in Algebra, Springer-Verlag, 2000 | MR | Zbl

[4] Shulezhko O. V., “On almost nilpotent varieties in different classes of linear algebras”, Chebyshevskiy Sbornik, 16:1 (2015), 67–88

[5] Mishchenko S., Valenti A., “An almost nilpotent variety of exponent 2”, Israel Journal of Mathematics, 199:1 (2014), 241–257 | DOI | MR | Zbl

[6] Mishchenko S. P., “Varieties of linear algebras with colength one”, Moscow University Mathematics Bulletin, 65:1 (2010), 23–27 | DOI | MR | Zbl

[7] Frolova Yu. Yu., Shulezhko O.V., “Almost nilpotent varieties of Leibniz algebras”, Prikladnaya Diskretnaya Matematika, 2015, no. 2(28), 30–36 | DOI

[8] Mishchenko S., Valenti A., “On almost nilpotent varieties of subexponential growth”, Journal of Algebra. 2015, 423:1, 902–915 | MR | Zbl

[9] Mishchenko S. P., Panov N. P., Frolova Yu. Yu., Nguyen Trang, “On the varieties of commutative metabelian algebras”, Fundamentalnaya i prikladnaya matematika, 21:1 (2016), 165–180

[10] Mishchenko S. P., Shulezhko O. V., “Description of almost nilpotent anticommutative metabelian varieties of subexponential growth”, Mal'tsev Meeting, collection of abstracts of international conference (Novosibirsk, 2014), 110

[11] Mishchenko S. P., “Infinite periodic words and almost nilpotent varieties”, Moscow University Mathematics Bulletin, 72:2 (2017,), 173–176 | DOI | MR | Zbl

[12] Shulezhko O. V., “New properties of almost nilpotent variety of exponent 2”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 14:3 (2014), 316–320 | Zbl

[13] Mishchenko S. P., Shulezhko O. V., “Almost nilpotent varieties of arbitrary integer exponent”, Moscow University Mathematics Bulletin, 70:2 (2015), 92–95 | DOI | MR | Zbl

[14] Panov N. P., “On Almost Nilpotent Varieties with Integer PI-Exponent”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 17:3 (2017), 331–343 | DOI | Zbl

[15] Zaitsev M. V., Mishchenko S. P., “Colength of varieties of linear algebras”, Math. Notes, 79:4 (2006), 511–517 | DOI | DOI | MR | Zbl

[16] Graham R. L., Knuth D. E., Patashnik O., Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994 | MR | Zbl