On Dirichlet approximation polynomials and some properties of Dirichlet $L$-functions
Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 297-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the analytic properties of Dirichlet $L$ -functions in the critical strip, characteristic for almost periodic functions. The research is based on Approximation approach, consisting in the construction of Dirichlet polynomials, which are almost periodic functions, "rapidly convergent" in the critical strip to Dirichlet $L$ -functions. On this path, for any rectangle lying in the critical strip, the existence of $\varepsilon $ -almost period for the Dirichlet L-function, we obtain the estimate constants of uniform continuity. Issues related to studying other properties of Dirichlet $L$ -functions are discussed.
Keywords: Dirichlet approximation polynomials, Dirichlet $L$-functions, almost periodic functions.
@article{CHEB_2017_18_4_a16,
     author = {O. A. Matveeva and V. N. Kuznetsov},
     title = {On {Dirichlet} approximation polynomials and some properties of {Dirichlet} $L$-functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {297--305},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a16/}
}
TY  - JOUR
AU  - O. A. Matveeva
AU  - V. N. Kuznetsov
TI  - On Dirichlet approximation polynomials and some properties of Dirichlet $L$-functions
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 297
EP  - 305
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a16/
LA  - ru
ID  - CHEB_2017_18_4_a16
ER  - 
%0 Journal Article
%A O. A. Matveeva
%A V. N. Kuznetsov
%T On Dirichlet approximation polynomials and some properties of Dirichlet $L$-functions
%J Čebyševskij sbornik
%D 2017
%P 297-305
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a16/
%G ru
%F CHEB_2017_18_4_a16
O. A. Matveeva; V. N. Kuznetsov. On Dirichlet approximation polynomials and some properties of Dirichlet $L$-functions. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 297-305. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a16/

[1] Matveeva O. A., “Approksimacionnye polinomy i povedenie L-funkcij Dirihle v kriticheskoj polose”, Izvestija Sarat. un-ta. Matematika, Mehanika. Informatika, 2013, no. 4-2, 80–84

[2] Matveeva O. A., Analiticheskie svojstva opredelennyh klassov rjadov Dirihle i nekotorye zadachi teorii L-funkcij Dirihle, Thesis for the academic degree of the Ph.D., Ulyanovsk, 2014, 110 pp.

[3] Kuznetsov V. N., Matveeva O. A., “O granichnom povedenii odnogo klassa rjadov Dirihle s mul'tiplikativnymi kojefficientami”, Chebyshevskij sbornik, 17:3 (2016), 115–124 | DOI | Zbl

[4] Demidovich B. P., Lekcii po matematicheskoj teorii ustojchivosti, MSU publ., M., 1998, 480 pp.

[5] Levin B. Ja., Raspredelenie kornej celyh funkcij, Izd-vo tehniko-teoreticheskoj literatury, 1956, 632 pp.

[6] Karatsuba A. A., Osnovy analiticheskoj teorii chisel, Nauka, M., 1983, 239 pp.

[7] Chudakov N. G., Vvedenie v teoriju L-funkcij Dirihle, Izd-vo tehniko-teoreticheskoj literatury, 1947, 202 pp.

[8] Matveev V. A., Matveeva O. A., “O povedenii v kriticheskoj polose rjadov Dirihle s konechnoznachnymi mul'tiplikatinymi kojefficientami iso granichennoj summatornoj funkciej”, Chebyshevskij sbornik, 13:2 (2012), 106–116 | Zbl

[9] Voronin S. M., “Ob universal'nosti dzeta-funkcii Rimana”, Izv. AN SSSR, Serija Matematika, 39:3 (1975), 457–486

[10] Voronin S. M., Analiticheskie svojstva proizvodjashhih funkcij Dirihle arifmeticheskih ob'ektov, Thesis for the academic degree of Doctor of Science, MIAN SSSR, 1977, 90 pp.

[11] Voronin S. M., Karatsuba A. A., Dzeta-funkcija Rimana, Fizmatlit, M., 1994, 376 pp.

[12] Mishou H., “The joint distribution of the Riemann zeta-function and Hurwitz zeta-function”, Lith. Math J., 47:1 (2007), 32–47 | DOI | MR | Zbl

[13] Kuznetsov V. N., Matveev V. A., “K zadache chislennogo opredelenija nulej L-funkcij Dirihle chislovyh polej”, Chebyshevskij sbornik, 16:2 (2015), 144–155

[14] Matveev V. A., “Ob odnom chislennom algoritme opredelenija nulej L-funkcij Dirihle chislovyh polej”, Materialy XXIII Mezhdunarodnoj konferencii “Algebra, teorija chisel: sovremennye problemy i prilozhenija”, izd-vo TPGU, Tula, 2015, 233–234 | Zbl

[15] Matveev V. A., Matveeva O. A., “Ob odnom podhode poluchenija plotnostnyh teorem dlja nulej L-funkcij Dirihle chislovyh polej”, Materialy XXIII Mezhdunarodnoj konferencii “Algebra, teorija chisel: sovremennye problemy i prilozhenija”, izd-vo TPGU, Tula, 2015, 234–235