Geometrization of numeration systems
Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 222-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain geometrization theorem for numeration systems based on greedy expansions of natural numbers on denomirators of partial convergents of an arbitrary irrational $\alpha$ from the interval $(0;1)$. More precisely, denomirators $\left \{ Q_i (\alpha) \right \}$ of partial convergents of an arbitrary irrational $\alpha \in (0; 1)$ generate Ostrowski–Zeckendorf representations of natural numbers. These representations have the form $n = \sum\limits_{i=0}^{k} z_i( \alpha, n) Q_i ( \alpha )$ with natural conditions on $z_i( \alpha, n)$ described in the terms of partial quotients $q_i(\alpha)$. In the case $\alpha =\frac{\sqrt{5}-1}{2}$ we obtain well-known Fibonacci numeration system. For $\alpha=\frac{\sqrt{g^2+4}-g}{2}$ with $g \ge 2$ corresponding expansion is called representation of natural numbers in generalized Fibonacci numeration system. In the paper we study the sets $\mathbb{Z} \left ( z_0, \ldots, z_{l} \right )$, of natural numbers with given ending of Ostrowski–Zeckendorf representation. Our main result is the geometrization theorem, describing the sets $\mathbb{Z} \left ( z_0, \ldots, z_{l} \right )$ in the terms of fractional parts of the form $\left \{ n \alpha \right \}$. Particularly,for any admissible ending $\left ( z_0, \ldots, z_{l} \right )$ there exist efffectively computable $a$, $b\in\mathbb{Z}$ such that $n \in \mathbb{Z} \left ( z_0, \ldots, z_{l} \right )$, if and only if the fractional part$\left \{ (n+1) i_0 (\alpha) \right \}$, $i_0 (\alpha) = \max \left \{ \alpha; 1 - \alpha \right \}$, lies in the segment $\left [ \{a \alpha \}; \{b \alpha \} \right ]$. This result generalizes geometrization theorems for classical and generalized Fibonacci numeration systems, proved by authors earlier.
Keywords: numeration systems, Ostrowski–Zeckendorf representation, geometrization theorem.
@article{CHEB_2017_18_4_a10,
     author = {A. A. Zhukova and A. V. Shutov},
     title = {Geometrization of numeration systems},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {222--245},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a10/}
}
TY  - JOUR
AU  - A. A. Zhukova
AU  - A. V. Shutov
TI  - Geometrization of numeration systems
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 222
EP  - 245
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a10/
LA  - ru
ID  - CHEB_2017_18_4_a10
ER  - 
%0 Journal Article
%A A. A. Zhukova
%A A. V. Shutov
%T Geometrization of numeration systems
%J Čebyševskij sbornik
%D 2017
%P 222-245
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a10/
%G ru
%F CHEB_2017_18_4_a10
A. A. Zhukova; A. V. Shutov. Geometrization of numeration systems. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 222-245. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a10/

[1] Knuth D. E., “Fibonacci multiplication”, Appl. Math. Lett., 1 (1988), 57–60 | DOI | MR | Zbl

[2] Mintchev S., “Continued fraction expansions and self-similarity of rotation on the circle”, J. Phys. A. Math. Gen., 36 (2002), 1–14

[3] Ostrowski A., “Bemerkugen zur Theorie der Diophantischen Approximationen”, Abh. Math. Sem. Univ. Hamburg, 1 (1922), 77–98 | DOI | MR

[4] Van Ravenstein T., “The three gap theorem (Steinhaus conjecture)”, J. Austral. Math. Soc. Ser. A, 45 (1988), 360–370 | DOI | MR | Zbl

[5] Shutov A. V., “New estimates in the Hecke-Kesten problem”, Analytic and Probabilistic Methods in Number Theory, eds. A. Laurincikas, E. Manstavicius, TEV, Vilnius, 2007, 190–203 | MR | Zbl

[6] Gricenko S. A., Mot'kina N. N., “Zadacha Hua-Lokena s prostymi chislami special'nogo vida”, DAN respubliki Tadzhikistan, 52:7 (2009), 497–500 (in Russian)

[7] Gricenko S. A., Mot'kina N. N., “On the computation of some singular series”, Chebyshevskii sbornik, 12:4 (2011), 85–92 (in Russian) | Zbl

[8] Gricenko S. A., Mot'kina N. N., “O nekotoryh additivnyh zadachah teorii chisel”, Nauchnye vedomosti BelGU. Serija Matematika. Fizika, 5(76):18 (2010), 83–87 (in Russian)

[9] Gricenko S. A., Mot'kina N. N., “On Chudakov's theorem involving primers of a special type”, Chebyshevskii sbornik, 12:4 (2011), 75–84 (in Russian) | Zbl

[10] Gricenko S. A., Mot'kina N. N., “Ob odnom variante ternarnoj problemy Gol'dbaha”, DAN respubliki Tadzhikistan, 52:6 (2009), 413–417 (in Russian)

[11] Gricenko S. A., Mot'kina N. N., “Waring's promblem involving natural numbers of a special type”, Chebyshevskii sbornik, 15:3 (2014), 31–47 (in Russian) | Zbl

[12] Davletjarova E. P., Zhukova A. A., Shutov A. V., St. Petersburg Mathematical Journal, 25:6 (2014), 893–907 | DOI | MR

[13] Davletjarova E. P., Zhukova A. A., Shutov A. V., “Geometrizacija obobshhennyh sistem schislenija Fibonacci i ee prilozhenija k teorii chisel”, Chebyshevskii sbornik, 17:2 (2016), 88–112 (in Russian) | DOI

[14] Zhuravlev V. G., St. Petersburg Mathematical Journal, 19:3 (2008), 431–454 | DOI | MR | Zbl

[15] Zhuravlev V. G., Izvestiya: Mathematics, 71:2 (2007), 307–340 | DOI | DOI | MR | Zbl

[16] Zhuravlev V. G., Journal of Mathematical Sciences, 143:3 (2007), 3108–3123 | DOI | MR | Zbl

[17] Zhuravlev V. G., Journal of Mathematical Sciences, 150:3 (2008), 2084–2095 | DOI | MR

[18] Zhuravlev V. G., St. Petersburg Mathematical Journal, 20:3 (2009), 339–360 | DOI | MR | Zbl

[19] Krasil'shhikov V. V., Shutov A. V., “Nekotorye voprosy vlozhenija reshetok v odnomernye kvaziperiodicheskie razbienija”, Vestnik SamGU. Estestvennonauchnaja serija, 2007, no. 7(57), 84–91 (in Russian)

[20] Krasil'shhikov V. V., Shutov A. V., Russian Mathematics, 53:7 (2009), 1–6 | DOI | MR

[21] Manujlov N. N., “Rekurrentnye samopodobnye razbienija”, Chebyshevskii sbornik, 4:2 (2001), 87–91 (in Russian)

[22] Matijasevich Ju., “Svjaz' sistem uravnenij v slovah i dlinah s 10-j problemoj Gilberta”, Zapiski nauchnyh seminarov LOMI, 8, 1968, 132–144 (in Russian) | Zbl

[23] Matijasevich Ju., “Dve redukcii 10-j problemy Gilberta”, Zapiski nauchnyh seminarov LOMI, 8, 1968, 145–158 (in Russian) | Zbl

[24] Shvagireva I. K., “Binarnye additivnye zadachi nad $\circ$-progessijami Fibonachchi”, Materialy VII mezhdunarodnoj konferencii “Algebra i teorija chisel: sovremennye problemy i prilozhenija”, posvjashhennoj pamjati professora Anatolija Alekseevicha Karatsuby (Tula, 11–16 maja 2010 goda), TGPU, Tula, 2010, 198–200 (in Russian)

[25] Shutov A. V., “Arifmetika i geometrija odnomernyh kvazireshetok”, Chebyshevskii sbornik, 11 (2010), 255–262 (in Russian) | Zbl

[26] Shutov A. V., Journal of Mathematical Sciences (New York), 182:4 (2012), 576–585 | DOI | MR | Zbl

[27] Shutov A. V., “O raspredelenii drobnyh dolej”, Chebyshevskii sbornik, 5:3 (2004), 112–121 (in Russian)

[28] Shutov A. V., “O raspredelenii drobnyh dolej II”, Issledovanija po algebre, teorii chisel, funkcional'nomu analizu i smezhnym voprosam, 3, 2005, 146–158 (in Russian)

[29] Shutov A. V., “Ob odnoj additivnoj zadache s drobnymi doljami”, Nauchnye vedomosti BelGU. Serija Matematika. Fizika, 5(148):30 (2013), 111–120 (in Russian)

[30] Shutov A. V., “Perenormirovki vrashhenij okruzhnosti”, Chebyshevskii sbornik, 5:4 (2004), 125–143 (in Russian) | Zbl

[31] Shutov A. V., “Posledovatel'nosti Shturma: grafy Rozi i forsing”, Chebyshevskii sbornik, 8:2 (2007), 128–139 (in Russian)

[32] Shutov A. V., Journal of Mathematical Sciences, 133:6 (2006), 1765–1771 | DOI | MR | Zbl

[33] Shutov A. V., “Sistemy schislenija i mnozhestva ogranichennogo ostatka”, Chebyshevskii sbornik, 7:3 (2006), 110–128 (in Russian) | Zbl