Geometrization of numeration systems
Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 222-245

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain geometrization theorem for numeration systems based on greedy expansions of natural numbers on denomirators of partial convergents of an arbitrary irrational $\alpha$ from the interval $(0;1)$. More precisely, denomirators $\left \{ Q_i (\alpha) \right \}$ of partial convergents of an arbitrary irrational $\alpha \in (0; 1)$ generate Ostrowski–Zeckendorf representations of natural numbers. These representations have the form $n = \sum\limits_{i=0}^{k} z_i( \alpha, n) Q_i ( \alpha )$ with natural conditions on $z_i( \alpha, n)$ described in the terms of partial quotients $q_i(\alpha)$. In the case $\alpha =\frac{\sqrt{5}-1}{2}$ we obtain well-known Fibonacci numeration system. For $\alpha=\frac{\sqrt{g^2+4}-g}{2}$ with $g \ge 2$ corresponding expansion is called representation of natural numbers in generalized Fibonacci numeration system. In the paper we study the sets $\mathbb{Z} \left ( z_0, \ldots, z_{l} \right )$, of natural numbers with given ending of Ostrowski–Zeckendorf representation. Our main result is the geometrization theorem, describing the sets $\mathbb{Z} \left ( z_0, \ldots, z_{l} \right )$ in the terms of fractional parts of the form $\left \{ n \alpha \right \}$. Particularly,for any admissible ending $\left ( z_0, \ldots, z_{l} \right )$ there exist efffectively computable $a$, $b\in\mathbb{Z}$ such that $n \in \mathbb{Z} \left ( z_0, \ldots, z_{l} \right )$, if and only if the fractional part$\left \{ (n+1) i_0 (\alpha) \right \}$, $i_0 (\alpha) = \max \left \{ \alpha; 1 - \alpha \right \}$, lies in the segment $\left [ \{a \alpha \}; \{b \alpha \} \right ]$. This result generalizes geometrization theorems for classical and generalized Fibonacci numeration systems, proved by authors earlier.
Keywords: numeration systems, Ostrowski–Zeckendorf representation, geometrization theorem.
@article{CHEB_2017_18_4_a10,
     author = {A. A. Zhukova and A. V. Shutov},
     title = {Geometrization of numeration systems},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {222--245},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a10/}
}
TY  - JOUR
AU  - A. A. Zhukova
AU  - A. V. Shutov
TI  - Geometrization of numeration systems
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 222
EP  - 245
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a10/
LA  - ru
ID  - CHEB_2017_18_4_a10
ER  - 
%0 Journal Article
%A A. A. Zhukova
%A A. V. Shutov
%T Geometrization of numeration systems
%J Čebyševskij sbornik
%D 2017
%P 222-245
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a10/
%G ru
%F CHEB_2017_18_4_a10
A. A. Zhukova; A. V. Shutov. Geometrization of numeration systems. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 222-245. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a10/