Geometrization of numeration systems
Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 222-245
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain geometrization theorem for numeration systems based on
greedy expansions of natural numbers on denomirators of partial
convergents of an arbitrary irrational $\alpha$ from the interval
$(0;1)$.
More precisely, denomirators $\left \{ Q_i (\alpha) \right \}$
of partial convergents of an arbitrary irrational
$\alpha \in (0; 1)$ generate Ostrowski–Zeckendorf representations
of natural numbers. These representations have the form $n =
\sum\limits_{i=0}^{k} z_i( \alpha, n) Q_i ( \alpha )$ with natural
conditions on $z_i( \alpha, n)$ described in the terms of partial
quotients $q_i(\alpha)$. In the case $\alpha
=\frac{\sqrt{5}-1}{2}$ we obtain well-known Fibonacci numeration
system. For $\alpha=\frac{\sqrt{g^2+4}-g}{2}$ with $g \ge 2$
corresponding expansion is called representation of natural
numbers in generalized Fibonacci numeration system.
In the paper we study the sets
$\mathbb{Z} \left ( z_0, \ldots, z_{l} \right )$,
of natural numbers with given ending of Ostrowski–Zeckendorf representation.
Our main result
is the geometrization theorem, describing the sets $\mathbb{Z}
\left ( z_0, \ldots, z_{l} \right )$ in the terms of fractional
parts of the form $\left \{ n \alpha \right \}$. Particularly,for
any admissible ending $\left ( z_0, \ldots, z_{l} \right )$ there
exist efffectively computable $a$, $b\in\mathbb{Z}$ such that
$n \in \mathbb{Z} \left ( z_0, \ldots, z_{l} \right )$, if and
only if the fractional part$\left \{ (n+1) i_0 (\alpha) \right \}$,
$i_0 (\alpha) = \max \left \{ \alpha; 1 - \alpha \right \}$,
lies in the segment $\left [ \{a \alpha \}; \{b \alpha \} \right ]$.
This result generalizes geometrization theorems for classical and generalized
Fibonacci numeration systems, proved by authors earlier.
Keywords:
numeration systems, Ostrowski–Zeckendorf representation, geometrization theorem.
@article{CHEB_2017_18_4_a10,
author = {A. A. Zhukova and A. V. Shutov},
title = {Geometrization of numeration systems},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {222--245},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a10/}
}
A. A. Zhukova; A. V. Shutov. Geometrization of numeration systems. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 222-245. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a10/