Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2017_18_3_a3, author = {Yu. A. Alkhimenkov and I. O. Bayuk and S. A. Tikhotskiy}, title = {Influence of spatial interactions of inclusions on the effective elastic tensor of cracked porous medium}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {44--54}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a3/} }
TY - JOUR AU - Yu. A. Alkhimenkov AU - I. O. Bayuk AU - S. A. Tikhotskiy TI - Influence of spatial interactions of inclusions on the effective elastic tensor of cracked porous medium JO - Čebyševskij sbornik PY - 2017 SP - 44 EP - 54 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a3/ LA - ru ID - CHEB_2017_18_3_a3 ER -
%0 Journal Article %A Yu. A. Alkhimenkov %A I. O. Bayuk %A S. A. Tikhotskiy %T Influence of spatial interactions of inclusions on the effective elastic tensor of cracked porous medium %J Čebyševskij sbornik %D 2017 %P 44-54 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a3/ %G ru %F CHEB_2017_18_3_a3
Yu. A. Alkhimenkov; I. O. Bayuk; S. A. Tikhotskiy. Influence of spatial interactions of inclusions on the effective elastic tensor of cracked porous medium. Čebyševskij sbornik, Tome 18 (2017) no. 3, pp. 44-54. http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a3/
[1] Alkhimenkov Yu. A., “The T-matrix approach for the mathematical modeling of the effective elastic properties of hydrocarbon reservoirs”, Izv., Phys. Solid Earth, 53:3 (2017), 477–487 | DOI | DOI
[2] Bayuk I. O., “Main principles of the mathematicall modelling of the macroscopic physical properties of the hydrocarbon collectors”, Tekhnologii Seismorazvedki, 2013, no. 4, 5–18
[3] Bayuk I.O., Beloborodov D.E., Berezina I.A., Vdovichenko I.I., Vershinin A.V., Gilyazetdinova D.R., Gorbunov V.N., Zingerman K.M., Korost D.V., Krasnova M.A., Tikhotskiy S.A., Ulkin D.A., Fokin I.V., Yakovlev M.Ya., Yalaev T.R., “Problems of the collector rocks elastic properties upscaling”, Proc. of the conference “Seismic technologies” (Moscow, 2016), 27–30
[4] Morozov E.M., Levin V. A., Vershinin A. V., Strength Analysis: FIDESYS in engineer hands, URSS, M., 2015, 400 pp.
[5] Levin V. A., Lokhin V. V., Zingerman K. M., “About one way of strength characteristics estimation for the porous bodies suspected to finite deformations”, Izvestya AN. Mechanika tverdogo tela, 1997, no. 4, 45–60
[6] Levin V. A., Zingerman K. M., “About the effective constitutive relations for the porous materials suspected to finite deformations and their overlaing”, Doklady RAN, 382:4 (2002), 482–487
[7] Shermergor T. D., Theory of elasticity for micro-inhomogeneous media, Nauka, M., 1977, 400 pp.
[8] Alkhimenkov Y. A., Bayuk I. O., “Analysis of anisotropy parameters of fractured carbonate reservoir”, 6th EAGE Saint Petersburg International Conference and Exhibition (2014)
[9] Alkhimenkov Y., “Practical Applications of the T-Matrix Approach to Fractured Porous Rocks”, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 2015
[10] Bayuk I. O., Ammerman M., Chesnokov E. M., “Elastic moduli of anisotropic clay”, Geophysics, 72:5 (2007), D107–D117 | DOI
[11] Buryachenko V. A., Micromechanics of Heterogeneous Materials, Springer, 2007 | MR | Zbl
[12] Buryachenko V. A., “On the thermo-elastostatics of heterogeneous materials: I. General integral equation”, Acta mechanica, 213:3 (2010), 359–374 | DOI | MR | Zbl
[13] Jakobsen M., Hudson J., Johansen T. A., “T-matrix approach to shale acoustics”, Geophys. J. Int., 154 (2003), 533–558 | DOI
[14] Kanaun K. K., Levin V. M., Self-Consistent Methods for Composites, v. 1, 2, Springer, Dordrecht, 2008
[15] Willis J. R., “Bounds and self-consistent estimates for the overall properties of anisotropic composites”, J. Mech. Phys. Solids, 1977, no. 25, 185–202 | DOI | Zbl